Diff of /CaraNet/eval_blood.py [000000] .. [6f3ba0]

Switch to unified view

a b/CaraNet/eval_blood.py
1
import os
2
import torch
3
import torch.nn as nn
4
import torch.nn.functional as F
5
import torchvision.transforms as transforms
6
from PIL import Image
7
import numpy as np
8
import pandas
9
import cv2
10
11
class test_dataset:
12
    def __init__(self, image_root, gt_root):
13
        self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg') or f.endswith('.png')]
14
        self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.jpg') or f.endswith('.png')]
15
        self.images = sorted(self.images)
16
        self.gts = sorted(self.gts)
17
        self.transform = transforms.ToTensor()
18
        self.gt_transform = transforms.ToTensor()
19
        self.size = len(self.images)
20
        self.index = 0
21
22
    def load_data(self):
23
        image = self.rgb_loader(self.images[self.index])
24
        image = self.transform(image).unsqueeze(0)
25
        gt = self.binary_loader(self.gts[self.index])
26
        name = self.images[self.index].split('/')[-1]
27
        if name.endswith('.jpg'):
28
            name = name.split('.jpg')[0] + '.png'
29
        self.index += 1
30
        return image, gt, name
31
32
    def rgb_loader(self, path):
33
        with open(path, 'rb') as f:
34
            img = Image.open(f)
35
            return img.convert('RGB')
36
37
    def binary_loader(self, path):
38
        with open(path, 'rb') as f:
39
            img = Image.open(f)
40
            return img.convert('L')
41
42
43
if __name__ == '__main__':
44
    for _data_name in ['test']:
45
        ###########################################################
46
        ##### image_root : your model inference results' path   ###
47
        ##### gt_root : gt files' path                          ###
48
        ###########################################################
49
50
        # image_root = 'D:/HarDNet-MSEG-master/results/HarDMSEG/Kvasir_SEG_Validation_120/'
51
        # gt_root = 'D:/HarDNet-MSEG-master/Kvasir_SEG_Validation_120/mask/'
52
53
        image_root = '/home/data/spleen_blood/CaraNet/results/CaraNet/test/'
54
        gt_root = '/home/data/spleen_blood/CaraNet/TestDataset/test/masks/'
55
56
        test_loader = test_dataset(image_root, gt_root)
57
        b=0.0
58
59
    for i in range(test_loader.size):
60
        image, gt, name = test_loader.load_data()
61
        gt = np.asarray(gt, np.float32)
62
        gt /= (gt.max() + 1e-8)
63
        image = image
64
        input = image[0,1,:,:]
65
        input = np.array(input)
66
        
67
        target = np.array(gt)
68
        N = gt.shape
69
        smooth = 1
70
        
71
        
72
        input_flat = np.reshape(input,(-1))
73
        target_flat = np.reshape(target,(-1))
74
        
75
        intersection = (input_flat*target_flat)
76
        #intersection = (iflat * tflat).sum()
77
        #A_sum = input_flat.sum()
78
        #B_sum = target_flat.sum()
79
        #intersection = (input_flat * target_flat).sum()
80
        #a=  ((2. * intersection + smooth) / (A_sum + B_sum + smooth) )
81
        #loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth)
82
        loss =  (2 * intersection.sum() + smooth) / (input_flat.sum() + target_flat.sum() + smooth)
83
        #loss =  loss.sum() / N[1]
84
        a =  '{:.4f}'.format(loss)
85
        a = float(a)
86
        
87
        b = b + a
88
        print( i, a)
89
90
    print(b/test_loader.size)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105