[6d389a]: / tools / data / parse_file_list.py

Download this file

536 lines (421 with data), 18.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright (c) OpenMMLab. All rights reserved.
import csv
import fnmatch
import glob
import json
import os
import os.path as osp
def parse_directory(path,
rgb_prefix='img_',
flow_x_prefix='flow_x_',
flow_y_prefix='flow_y_',
level=1):
"""Parse directories holding extracted frames from standard benchmarks.
Args:
path (str): Directory path to parse frames.
rgb_prefix (str): Prefix of generated rgb frames name.
default: 'img_'.
flow_x_prefix (str): Prefix of generated flow x name.
default: `flow_x_`.
flow_y_prefix (str): Prefix of generated flow y name.
default: `flow_y_`.
level (int): Directory level for glob searching. Options are 1 and 2.
default: 1.
Returns:
dict: frame info dict with video id as key and tuple(path(str),
rgb_num(int), flow_x_num(int)) as value.
"""
print(f'parse frames under directory {path}')
if level == 1:
# Only search for one-level directory
def locate_directory(x):
return osp.basename(x)
frame_dirs = glob.glob(osp.join(path, '*'))
elif level == 2:
# search for two-level directory
def locate_directory(x):
return osp.join(osp.basename(osp.dirname(x)), osp.basename(x))
frame_dirs = glob.glob(osp.join(path, '*', '*'))
else:
raise ValueError('level can be only 1 or 2')
def count_files(directory, prefix_list):
"""Count file number with a given directory and prefix.
Args:
directory (str): Data directory to be search.
prefix_list (list): List or prefix.
Returns:
list (int): Number list of the file with the prefix.
"""
lst = os.listdir(directory)
cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list]
return cnt_list
# check RGB
frame_dict = {}
for i, frame_dir in enumerate(frame_dirs):
total_num = count_files(frame_dir,
(rgb_prefix, flow_x_prefix, flow_y_prefix))
dir_name = locate_directory(frame_dir)
num_x = total_num[1]
num_y = total_num[2]
if num_x != num_y:
raise ValueError(f'x and y direction have different number '
f'of flow images in video directory: {frame_dir}')
if i % 200 == 0:
print(f'{i} videos parsed')
frame_dict[dir_name] = (frame_dir, total_num[0], num_x)
print('frame directory analysis done')
return frame_dict
def parse_ucf101_splits(level):
"""Parse UCF-101 dataset into "train", "val", "test" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
Returns:
list: "train", "val", "test" splits of UCF-101.
"""
class_index_file = 'data/ucf101/annotations/classInd.txt'
train_file_template = 'data/ucf101/annotations/trainlist{:02d}.txt'
test_file_template = 'data/ucf101/annotations/testlist{:02d}.txt'
with open(class_index_file, 'r') as fin:
class_index = [x.strip().split() for x in fin]
class_mapping = {x[1]: int(x[0]) - 1 for x in class_index}
def line_to_map(line):
"""A function to map line string to video and label.
Args:
line (str): A long directory path, which is a text path.
Returns:
tuple[str, str]: (video, label), video is the video id,
label is the video label.
"""
items = line.strip().split()
video = osp.splitext(items[0])[0]
if level == 1:
video = osp.basename(video)
label = items[0]
elif level == 2:
video = osp.join(
osp.basename(osp.dirname(video)), osp.basename(video))
label = class_mapping[osp.dirname(items[0])]
return video, label
splits = []
for i in range(1, 4):
with open(train_file_template.format(i), 'r') as fin:
train_list = [line_to_map(x) for x in fin]
with open(test_file_template.format(i), 'r') as fin:
test_list = [line_to_map(x) for x in fin]
splits.append((train_list, test_list))
return splits
def parse_jester_splits(level):
"""Parse Jester into "train", "val" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
Returns:
list: "train", "val", "test" splits of Jester dataset.
"""
# Read the annotations
class_index_file = 'data/jester/annotations/jester-v1-labels.csv'
train_file = 'data/jester/annotations/jester-v1-train.csv'
val_file = 'data/jester/annotations/jester-v1-validation.csv'
test_file = 'data/jester/annotations/jester-v1-test.csv'
with open(class_index_file, 'r') as fin:
class_index = [x.strip() for x in fin]
class_mapping = {class_index[idx]: idx for idx in range(len(class_index))}
def line_to_map(line, test_mode=False):
items = line.strip().split(';')
video = items[0]
if level == 1:
video = osp.basename(video)
elif level == 2:
video = osp.join(
osp.basename(osp.dirname(video)), osp.basename(video))
if test_mode:
return video
label = class_mapping[items[1]]
return video, label
with open(train_file, 'r') as fin:
train_list = [line_to_map(x) for x in fin]
with open(val_file, 'r') as fin:
val_list = [line_to_map(x) for x in fin]
with open(test_file, 'r') as fin:
test_list = [line_to_map(x, test_mode=True) for x in fin]
splits = ((train_list, val_list, test_list), )
return splits
def parse_sthv1_splits(level):
"""Parse Something-Something dataset V1 into "train", "val" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
Returns:
list: "train", "val", "test" splits of Something-Something V1 dataset.
"""
# Read the annotations
# yapf: disable
class_index_file = 'data/sthv1/annotations/something-something-v1-labels.csv' # noqa
# yapf: enable
train_file = 'data/sthv1/annotations/something-something-v1-train.csv'
val_file = 'data/sthv1/annotations/something-something-v1-validation.csv'
test_file = 'data/sthv1/annotations/something-something-v1-test.csv'
with open(class_index_file, 'r') as fin:
class_index = [x.strip() for x in fin]
class_mapping = {class_index[idx]: idx for idx in range(len(class_index))}
def line_to_map(line, test_mode=False):
items = line.strip().split(';')
video = items[0]
if level == 1:
video = osp.basename(video)
elif level == 2:
video = osp.join(
osp.basename(osp.dirname(video)), osp.basename(video))
if test_mode:
return video
label = class_mapping[items[1]]
return video, label
with open(train_file, 'r') as fin:
train_list = [line_to_map(x) for x in fin]
with open(val_file, 'r') as fin:
val_list = [line_to_map(x) for x in fin]
with open(test_file, 'r') as fin:
test_list = [line_to_map(x, test_mode=True) for x in fin]
splits = ((train_list, val_list, test_list), )
return splits
def parse_sthv2_splits(level):
"""Parse Something-Something dataset V2 into "train", "val" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
Returns:
list: "train", "val", "test" splits of Something-Something V2 dataset.
"""
# Read the annotations
# yapf: disable
class_index_file = 'data/sthv2/annotations/something-something-v2-labels.json' # noqa
# yapf: enable
train_file = 'data/sthv2/annotations/something-something-v2-train.json'
val_file = 'data/sthv2/annotations/something-something-v2-validation.json'
test_file = 'data/sthv2/annotations/something-something-v2-test.json'
with open(class_index_file, 'r') as fin:
class_mapping = json.loads(fin.read())
def line_to_map(item, test_mode=False):
video = item['id']
if level == 1:
video = osp.basename(video)
elif level == 2:
video = osp.join(
osp.basename(osp.dirname(video)), osp.basename(video))
if test_mode:
return video
template = item['template'].replace('[', '')
template = template.replace(']', '')
label = int(class_mapping[template])
return video, label
with open(train_file, 'r') as fin:
items = json.loads(fin.read())
train_list = [line_to_map(item) for item in items]
with open(val_file, 'r') as fin:
items = json.loads(fin.read())
val_list = [line_to_map(item) for item in items]
with open(test_file, 'r') as fin:
items = json.loads(fin.read())
test_list = [line_to_map(item, test_mode=True) for item in items]
splits = ((train_list, val_list, test_list), )
return splits
def parse_mmit_splits():
"""Parse Multi-Moments in Time dataset into "train", "val" splits.
Returns:
list: "train", "val", "test" splits of Multi-Moments in Time.
"""
# Read the annotations
def line_to_map(x):
video = osp.splitext(x[0])[0]
labels = [int(digit) for digit in x[1:]]
return video, labels
csv_reader = csv.reader(open('data/mmit/annotations/trainingSet.csv'))
train_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open('data/mmit/annotations/validationSet.csv'))
val_list = [line_to_map(x) for x in csv_reader]
test_list = val_list # not test for mit
splits = ((train_list, val_list, test_list), )
return splits
def parse_kinetics_splits(level, dataset):
"""Parse Kinetics dataset into "train", "val", "test" splits.
Args:
level (int): Directory level of data. 1 for the single-level directory,
2 for the two-level directory.
dataset (str): Denotes the version of Kinetics that needs to be parsed,
choices are "kinetics400", "kinetics600" and "kinetics700".
Returns:
list: "train", "val", "test" splits of Kinetics.
"""
def convert_label(s, keep_whitespaces=False):
"""Convert label name to a formal string.
Remove redundant '"' and convert whitespace to '_'.
Args:
s (str): String to be converted.
keep_whitespaces(bool): Whether to keep whitespace. Default: False.
Returns:
str: Converted string.
"""
if not keep_whitespaces:
return s.replace('"', '').replace(' ', '_')
return s.replace('"', '')
def line_to_map(x, test=False):
"""A function to map line string to video and label.
Args:
x (str): A single line from Kinetics csv file.
test (bool): Indicate whether the line comes from test
annotation file.
Returns:
tuple[str, str]: (video, label), video is the video id,
label is the video label.
"""
if test:
# video = f'{x[0]}_{int(x[1]):06d}_{int(x[2]):06d}'
video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}'
label = -1 # label unknown
return video, label
video = f'{x[1]}_{int(float(x[2])):06d}_{int(float(x[3])):06d}'
if level == 2:
video = f'{convert_label(x[0])}/{video}'
else:
assert level == 1
label = class_mapping[convert_label(x[0])]
return video, label
train_file = f'data/{dataset}/annotations/kinetics_train.csv'
val_file = f'data/{dataset}/annotations/kinetics_val.csv'
test_file = f'data/{dataset}/annotations/kinetics_test.csv'
csv_reader = csv.reader(open(train_file))
# skip the first line
next(csv_reader)
labels_sorted = sorted({convert_label(row[0]) for row in csv_reader})
class_mapping = {label: i for i, label in enumerate(labels_sorted)}
csv_reader = csv.reader(open(train_file))
next(csv_reader)
train_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open(val_file))
next(csv_reader)
val_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open(test_file))
next(csv_reader)
test_list = [line_to_map(x, test=True) for x in csv_reader]
splits = ((train_list, val_list, test_list), )
return splits
def parse_mit_splits():
"""Parse Moments in Time dataset into "train", "val" splits.
Returns:
list: "train", "val", "test" splits of Moments in Time.
"""
# Read the annotations
class_mapping = {}
with open('data/mit/annotations/moments_categories.txt') as f_cat:
for line in f_cat.readlines():
cat, digit = line.rstrip().split(',')
class_mapping[cat] = int(digit)
def line_to_map(x):
video = osp.splitext(x[0])[0]
label = class_mapping[osp.dirname(x[0])]
return video, label
csv_reader = csv.reader(open('data/mit/annotations/trainingSet.csv'))
train_list = [line_to_map(x) for x in csv_reader]
csv_reader = csv.reader(open('data/mit/annotations/validationSet.csv'))
val_list = [line_to_map(x) for x in csv_reader]
test_list = val_list # no test for mit
splits = ((train_list, val_list, test_list), )
return splits
def parse_hmdb51_split(level):
train_file_template = 'data/hmdb51/annotations/trainlist{:02d}.txt'
test_file_template = 'data/hmdb51/annotations/testlist{:02d}.txt'
class_index_file = 'data/hmdb51/annotations/classInd.txt'
def generate_class_index_file():
"""This function will generate a `ClassInd.txt` for HMDB51 in a format
like UCF101, where class id starts with 1."""
video_path = 'data/hmdb51/videos'
annotation_dir = 'data/hmdb51/annotations'
class_list = sorted(os.listdir(video_path))
class_dict = dict()
if not osp.exists(class_index_file):
with open(class_index_file, 'w') as f:
content = []
for class_id, class_name in enumerate(class_list):
# like `ClassInd.txt` in UCF-101,
# the class_id begins with 1
class_dict[class_name] = class_id + 1
cur_line = ' '.join([str(class_id + 1), class_name])
content.append(cur_line)
content = '\n'.join(content)
f.write(content)
else:
print(f'{class_index_file} has been generated before.')
class_dict = {
class_name: class_id + 1
for class_id, class_name in enumerate(class_list)
}
for i in range(1, 4):
train_content = []
test_content = []
for class_name in class_dict:
filename = class_name + f'_test_split{i}.txt'
filename_path = osp.join(annotation_dir, filename)
with open(filename_path, 'r') as fin:
for line in fin:
video_info = line.strip().split()
video_name = video_info[0]
if video_info[1] == '1':
target_line = ' '.join([
osp.join(class_name, video_name),
str(class_dict[class_name])
])
train_content.append(target_line)
elif video_info[1] == '2':
target_line = ' '.join([
osp.join(class_name, video_name),
str(class_dict[class_name])
])
test_content.append(target_line)
train_content = '\n'.join(train_content)
test_content = '\n'.join(test_content)
with open(train_file_template.format(i), 'w') as fout:
fout.write(train_content)
with open(test_file_template.format(i), 'w') as fout:
fout.write(test_content)
generate_class_index_file()
with open(class_index_file, 'r') as fin:
class_index = [x.strip().split() for x in fin]
class_mapping = {x[1]: int(x[0]) - 1 for x in class_index}
def line_to_map(line):
items = line.strip().split()
video = osp.splitext(items[0])[0]
if level == 1:
video = osp.basename(video)
elif level == 2:
video = osp.join(
osp.basename(osp.dirname(video)), osp.basename(video))
label = class_mapping[osp.dirname(items[0])]
return video, label
splits = []
for i in range(1, 4):
with open(train_file_template.format(i), 'r') as fin:
train_list = [line_to_map(x) for x in fin]
with open(test_file_template.format(i), 'r') as fin:
test_list = [line_to_map(x) for x in fin]
splits.append((train_list, test_list))
return splits
def parse_diving48_splits():
train_file = 'data/diving48/annotations/Diving48_V2_train.json'
test_file = 'data/diving48/annotations/Diving48_V2_test.json'
train = json.load(open(train_file))
test = json.load(open(test_file))
# class_index_file = 'data/diving48/annotations/Diving48_vocab.json'
# class_list = json.load(open(class_index_file))
train_list = []
test_list = []
for item in train:
vid_name = item['vid_name']
label = item['label']
train_list.append((vid_name, label))
for item in test:
vid_name = item['vid_name']
label = item['label']
test_list.append((vid_name, label))
splits = ((train_list, test_list), )
return splits