[6d389a]: / tools / data / kinetics / download.py

Download this file

231 lines (203 with data), 8.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# ------------------------------------------------------------------------------
# Adapted from https://github.com/activitynet/ActivityNet/
# Original licence: Copyright (c) Microsoft, under the MIT License.
# ------------------------------------------------------------------------------
import argparse
import glob
import json
import os
import shutil
import ssl
import subprocess
import uuid
from collections import OrderedDict
import pandas as pd
from joblib import Parallel, delayed
ssl._create_default_https_context = ssl._create_unverified_context
def create_video_folders(dataset, output_dir, tmp_dir):
"""Creates a directory for each label name in the dataset."""
if 'label-name' not in dataset.columns:
this_dir = os.path.join(output_dir, 'test')
if not os.path.exists(this_dir):
os.makedirs(this_dir)
# I should return a dict but ...
return this_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
label_to_dir = {}
for label_name in dataset['label-name'].unique():
this_dir = os.path.join(output_dir, label_name)
if not os.path.exists(this_dir):
os.makedirs(this_dir)
label_to_dir[label_name] = this_dir
return label_to_dir
def construct_video_filename(row, label_to_dir, trim_format='%06d'):
"""Given a dataset row, this function constructs the output filename for a
given video."""
basename = '%s_%s_%s.mp4' % (row['video-id'],
trim_format % row['start-time'],
trim_format % row['end-time'])
if not isinstance(label_to_dir, dict):
dirname = label_to_dir
else:
dirname = label_to_dir[row['label-name']]
output_filename = os.path.join(dirname, basename)
return output_filename
def download_clip(video_identifier,
output_filename,
start_time,
end_time,
tmp_dir='/tmp/kinetics/.tmp_dir',
num_attempts=5,
url_base='https://www.youtube.com/watch?v='):
"""Download a video from youtube if exists and is not blocked.
arguments:
---------
video_identifier: str
Unique YouTube video identifier (11 characters)
output_filename: str
File path where the video will be stored.
start_time: float
Indicates the beginning time in seconds from where the video
will be trimmed.
end_time: float
Indicates the ending time in seconds of the trimmed video.
"""
# Defensive argument checking.
assert isinstance(video_identifier, str), 'video_identifier must be string'
assert isinstance(output_filename, str), 'output_filename must be string'
assert len(video_identifier) == 11, 'video_identifier must have length 11'
status = False
# Construct command line for getting the direct video link.
tmp_filename = os.path.join(tmp_dir, '%s.%%(ext)s' % uuid.uuid4())
if not os.path.exists(output_filename):
if not os.path.exists(tmp_filename):
command = [
'youtube-dl', '--quiet', '--no-warnings',
'--no-check-certificate', '-f', 'mp4', '-o',
'"%s"' % tmp_filename,
'"%s"' % (url_base + video_identifier)
]
command = ' '.join(command)
print(command)
attempts = 0
while True:
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as err:
attempts += 1
if attempts == num_attempts:
return status, err.output
else:
break
tmp_filename = glob.glob('%s*' % tmp_filename.split('.')[0])[0]
# Construct command to trim the videos (ffmpeg required).
command = [
'ffmpeg', '-i',
'"%s"' % tmp_filename, '-ss',
str(start_time), '-t',
str(end_time - start_time), '-c:v', 'libx264', '-c:a', 'copy',
'-threads', '1', '-loglevel', 'panic',
'"%s"' % output_filename
]
command = ' '.join(command)
try:
subprocess.check_output(
command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as err:
return status, err.output
# Check if the video was successfully saved.
status = os.path.exists(output_filename)
os.remove(tmp_filename)
return status, 'Downloaded'
def download_clip_wrapper(row, label_to_dir, trim_format, tmp_dir):
"""Wrapper for parallel processing purposes."""
output_filename = construct_video_filename(row, label_to_dir, trim_format)
clip_id = os.path.basename(output_filename).split('.mp4')[0]
if os.path.exists(output_filename):
status = tuple([clip_id, True, 'Exists'])
return status
downloaded, log = download_clip(
row['video-id'],
output_filename,
row['start-time'],
row['end-time'],
tmp_dir=tmp_dir)
status = tuple([clip_id, downloaded, log])
return status
def parse_kinetics_annotations(input_csv, ignore_is_cc=False):
"""Returns a parsed DataFrame.
arguments:
---------
input_csv: str
Path to CSV file containing the following columns:
'YouTube Identifier,Start time,End time,Class label'
returns:
-------
dataset: DataFrame
Pandas with the following columns:
'video-id', 'start-time', 'end-time', 'label-name'
"""
df = pd.read_csv(input_csv)
if 'youtube_id' in df.columns:
columns = OrderedDict([('youtube_id', 'video-id'),
('time_start', 'start-time'),
('time_end', 'end-time'),
('label', 'label-name')])
df.rename(columns=columns, inplace=True)
if ignore_is_cc:
df = df.loc[:, df.columns.tolist()[:-1]]
return df
def main(input_csv,
output_dir,
trim_format='%06d',
num_jobs=24,
tmp_dir='/tmp/kinetics'):
tmp_dir = os.path.join(tmp_dir, '.tmp_dir')
# Reading and parsing Kinetics.
dataset = parse_kinetics_annotations(input_csv)
# Creates folders where videos will be saved later.
label_to_dir = create_video_folders(dataset, output_dir, tmp_dir)
# Download all clips.
if num_jobs == 1:
status_list = []
for _, row in dataset.iterrows():
status_list.append(
download_clip_wrapper(row, label_to_dir, trim_format, tmp_dir))
else:
status_list = Parallel(
n_jobs=num_jobs)(delayed(download_clip_wrapper)(
row, label_to_dir, trim_format, tmp_dir)
for i, row in dataset.iterrows())
# Clean tmp dir.
shutil.rmtree(tmp_dir)
# Save download report.
with open('download_report.json', 'w') as fobj:
fobj.write(json.dumps(status_list))
if __name__ == '__main__':
description = 'Helper script for downloading and trimming kinetics videos.'
p = argparse.ArgumentParser(description=description)
p.add_argument(
'input_csv',
type=str,
help=('CSV file containing the following format: '
'YouTube Identifier,Start time,End time,Class label'))
p.add_argument(
'output_dir',
type=str,
help='Output directory where videos will be saved.')
p.add_argument(
'-f',
'--trim-format',
type=str,
default='%06d',
help=('This will be the format for the '
'filename of trimmed videos: '
'videoid_%0xd(start_time)_%0xd(end_time).mp4'))
p.add_argument('-n', '--num-jobs', type=int, default=24)
p.add_argument('-t', '--tmp-dir', type=str, default='/tmp/kinetics')
# help='CSV file of the previous version of Kinetics.')
main(**vars(p.parse_args()))