# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import mmcv
import numpy as np
from mmaction.core import ActivityNetLocalization
args = None
def cuhk17_top1():
"""Assign label for each proposal with the cuhk17 result, which is the #2
entry in http://activity-net.org/challenges/2017/evaluation.html."""
if not osp.exists('cuhk_anet17_pred.json'):
os.system('wget https://download.openmmlab.com/'
'mmaction/localization/cuhk_anet17_pred.json')
proposal = mmcv.load(args.proposal)
results = proposal['results']
cuhk_pred = mmcv.load('cuhk_anet17_pred.json')['results']
def get_topk(preds, k):
preds.sort(key=lambda x: x['score'])
return preds[-k:]
for k, v in results.items():
action_pred = cuhk_pred[k]
top1 = get_topk(action_pred, 1)
top1_label = top1[0]['label']
new_value = []
for item in v:
x = dict(label=top1_label)
x.update(item)
new_value.append(x)
results[k] = new_value
proposal['results'] = results
mmcv.dump(proposal, args.det_output)
cls_funcs = {'cuhk17_top1': cuhk17_top1}
def parse_args():
parser = argparse.ArgumentParser(description='Report detection mAP for'
'ActivityNet proposal file')
parser.add_argument('--proposal', type=str, help='proposal file')
parser.add_argument(
'--gt',
type=str,
default='data/ActivityNet/'
'anet_anno_val.json',
help='groundtruth file')
parser.add_argument(
'--cls',
type=str,
default='cuhk17_top1',
choices=['cuhk17_top1'],
help='the way to assign label for each '
'proposal')
parser.add_argument(
'--det-output',
type=str,
default='det_result.json',
help='the path to store detection results')
args = parser.parse_args()
return args
def main():
global args, cls_funcs
args = parse_args()
func = cls_funcs[args.cls]
func()
anet_detection = ActivityNetLocalization(
args.gt,
args.det_output,
tiou_thresholds=np.linspace(0.5, 0.95, 10),
verbose=True)
mAP, average_mAP = anet_detection.evaluate()
print('[RESULTS] Performance on ActivityNet detection task.\n'
f'mAP: {mAP}\nAverage-mAP: {average_mAP}')
if __name__ == '__main__':
main()