# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from mmcv import Config
from mmaction.models import build_recognizer
try:
from mmcv.cnn import get_model_complexity_info
except ImportError:
raise ImportError('Please upgrade mmcv to >0.6.2')
def parse_args():
parser = argparse.ArgumentParser(description='Train a recognizer')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[340, 256],
help='input image size')
args = parser.parse_args()
return args
def main():
args = parse_args()
if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (
1,
3,
) + tuple(args.shape)
elif len(args.shape) == 4:
# n, c, h, w = args.shape
input_shape = tuple(args.shape)
elif len(args.shape) == 5:
# n, c, t, h, w = args.shape
input_shape = tuple(args.shape)
else:
raise ValueError('invalid input shape')
cfg = Config.fromfile(args.config)
model = build_recognizer(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
model = model.cuda()
model.eval()
if hasattr(model, 'forward_dummy'):
model.forward = model.forward_dummy
else:
raise NotImplementedError(
'FLOPs counter is currently not currently supported with {}'.
format(model.__class__.__name__))
flops, params = get_model_complexity_info(model, input_shape)
split_line = '=' * 30
print(f'{split_line}\nInput shape: {input_shape}\n'
f'Flops: {flops}\nParams: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
'You may need to check if all ops are supported and verify that the '
'flops computation is correct.')
if __name__ == '__main__':
main()