# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
import tempfile
import unittest.mock as mock
import warnings
from collections import OrderedDict
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
from mmcv.runner import EpochBasedRunner, IterBasedRunner
from mmcv.utils import get_logger
from torch.utils.data import DataLoader, Dataset
# TODO import eval hooks from mmcv and delete them from mmaction2
try:
from mmcv.runner import EvalHook, DistEvalHook
pytest.skip(
'EvalHook and DistEvalHook are supported in MMCV',
allow_module_level=True)
except ImportError:
warnings.warn('DeprecationWarning: EvalHook and DistEvalHook from '
'mmaction2 will be deprecated. Please install mmcv through '
'master branch.')
from mmaction.core import DistEvalHook, EvalHook
class ExampleDataset(Dataset):
def __init__(self):
self.index = 0
self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6]
def __getitem__(self, idx):
results = dict(x=torch.tensor([1]))
return results
def __len__(self):
return 1
@mock.create_autospec
def evaluate(self, results, logger=None):
pass
class EvalDataset(ExampleDataset):
def evaluate(self, results, logger=None):
acc = self.eval_result[self.index]
output = OrderedDict(acc=acc, index=self.index, score=acc)
self.index += 1
return output
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
@staticmethod
def forward(x, **kwargs):
return x
@staticmethod
def train_step(data_batch, optimizer, **kwargs):
if not isinstance(data_batch, dict):
data_batch = dict(x=data_batch)
return data_batch
def val_step(self, x, optimizer, **kwargs):
return dict(loss=self(x))
def _build_epoch_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = EpochBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
def _build_iter_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = IterBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
def test_eval_hook():
with pytest.raises(AssertionError):
# `save_best` should be a str
test_dataset = Model()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best=True)
with pytest.raises(TypeError):
# dataloader must be a pytorch DataLoader
test_dataset = Model()
data_loader = [DataLoader(test_dataset)]
EvalHook(data_loader)
with pytest.raises(ValueError):
# save_best must be valid when rule_map is None
test_dataset = ExampleDataset()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='unsupport')
with pytest.raises(KeyError):
# rule must be in keys of rule_map
test_dataset = Model()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='auto', rule='unsupport')
test_dataset = ExampleDataset()
loader = DataLoader(test_dataset)
model = Model()
data_loader = DataLoader(test_dataset)
eval_hook = EvalHook(data_loader, save_best=None)
with tempfile.TemporaryDirectory() as tmpdir:
# total_epochs = 1
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 1)
test_dataset.evaluate.assert_called_with(
test_dataset, [torch.tensor([1])], logger=runner.logger)
assert runner.meta is None or 'best_score' not in runner.meta[
'hook_msgs']
assert runner.meta is None or 'best_ckpt' not in runner.meta[
'hook_msgs']
# when `save_best` is set to 'auto', first metric will be used.
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='auto')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best acc and corresponding epoch
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best score and corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader, interval=1, save_best='score', rule='greater')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best score using less compare func
# and indicate corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc', rule='less')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# Test the EvalHook when resume happened
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 2)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 4
resume_from = osp.join(tmpdir, 'latest.pth')
loader = DataLoader(ExampleDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.resume(resume_from)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
@patch('mmaction.apis.single_gpu_test', MagicMock)
@patch('mmaction.apis.multi_gpu_test', MagicMock)
@pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook])
@pytest.mark.parametrize('_build_demo_runner,by_epoch',
[(_build_epoch_runner, True),
(_build_iter_runner, False)])
def test_start_param(EvalHookParam, _build_demo_runner, by_epoch):
# create dummy data
dataloader = DataLoader(torch.ones((5, 2)))
# 0.1. dataloader is not a DataLoader object
with pytest.raises(TypeError):
EvalHookParam(dataloader=MagicMock(), interval=-1)
# 0.2. negative interval
with pytest.raises(ValueError):
EvalHookParam(dataloader, interval=-1)
# 1. start=None, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, interval=1, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 2. start=1, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=1, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, interval=2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 1 # after epoch 2
# 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 3
# 5. start=0/negative, interval=1: perform evaluation after each epoch and
# before epoch 1.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=0, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2
runner = _build_demo_runner()
with pytest.warns(UserWarning):
evalhook = EvalHookParam(
dataloader, start=-2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2
# 6. resuming from epoch i, start = x (x<=i), interval =1: perform
# evaluation after each epoch and before the first epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 2
else:
runner._iter = 2
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # before & after epoch 3
# 7. resuming from epoch i, start = i+1/None, interval =1: perform
# evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 1
else:
runner._iter = 1
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 2 & 3
shutil.rmtree(runner.work_dir)