# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmaction.models import SingleRoIExtractor3D
def test_single_roi_extractor3d():
roi_extractor = SingleRoIExtractor3D(
roi_layer_type='RoIAlign',
featmap_stride=16,
output_size=8,
sampling_ratio=0,
pool_mode='avg',
aligned=True,
with_temporal_pool=True)
feat = torch.randn([4, 64, 8, 16, 16])
rois = torch.tensor([[0., 1., 1., 6., 6.], [1., 2., 2., 7., 7.],
[3., 2., 2., 9., 9.], [2., 2., 0., 10., 9.]])
roi_feat, feat = roi_extractor(feat, rois)
assert roi_feat.shape == (4, 64, 1, 8, 8)
assert feat.shape == (4, 64, 1, 16, 16)
feat = (torch.randn([4, 64, 8, 16, 16]), torch.randn([4, 32, 16, 16, 16]))
roi_feat, feat = roi_extractor(feat, rois)
assert roi_feat.shape == (4, 96, 1, 8, 8)
assert feat.shape == (4, 96, 1, 16, 16)
feat = torch.randn([4, 64, 8, 16, 16])
roi_extractor = SingleRoIExtractor3D(
roi_layer_type='RoIAlign',
featmap_stride=16,
output_size=8,
sampling_ratio=0,
pool_mode='avg',
aligned=True,
with_temporal_pool=False)
roi_feat, feat = roi_extractor(feat, rois)
assert roi_feat.shape == (4, 64, 8, 8, 8)
assert feat.shape == (4, 64, 8, 16, 16)
feat = (torch.randn([4, 64, 8, 16, 16]), torch.randn([4, 32, 16, 16, 16]))
roi_feat, feat = roi_extractor(feat, rois)
assert roi_feat.shape == (4, 96, 16, 8, 8)
assert feat.shape == (4, 96, 16, 16, 16)
feat = torch.randn([4, 64, 8, 16, 16])
roi_extractor = SingleRoIExtractor3D(
roi_layer_type='RoIAlign',
featmap_stride=16,
output_size=8,
sampling_ratio=0,
pool_mode='avg',
aligned=True,
with_temporal_pool=True,
with_global=True)
roi_feat, feat = roi_extractor(feat, rois)
assert roi_feat.shape == (4, 128, 1, 8, 8)
assert feat.shape == (4, 64, 1, 16, 16)