# Copyright (c) OpenMMLab. All rights reserved.
import copy
import pytest
import torch
from mmaction.models import TPN
from .base import generate_backbone_demo_inputs
def test_tpn():
"""Test TPN backbone."""
tpn_cfg = dict(
in_channels=(1024, 2048),
out_channels=1024,
spatial_modulation_cfg=dict(
in_channels=(1024, 2048), out_channels=2048),
temporal_modulation_cfg=dict(downsample_scales=(8, 8)),
upsample_cfg=dict(scale_factor=(1, 1, 1)),
downsample_cfg=dict(downsample_scale=(1, 1, 1)),
level_fusion_cfg=dict(
in_channels=(1024, 1024),
mid_channels=(1024, 1024),
out_channels=2048,
downsample_scales=((1, 1, 1), (1, 1, 1))),
aux_head_cfg=dict(out_channels=400, loss_weight=0.5))
with pytest.raises(AssertionError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['in_channels'] = list(tpn_cfg_['in_channels'])
TPN(**tpn_cfg_)
with pytest.raises(AssertionError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['out_channels'] = float(tpn_cfg_['out_channels'])
TPN(**tpn_cfg_)
with pytest.raises(AssertionError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['downsample_cfg']['downsample_position'] = 'unsupport'
TPN(**tpn_cfg_)
for k in tpn_cfg:
if not k.endswith('_cfg'):
continue
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_[k] = list()
with pytest.raises(AssertionError):
TPN(**tpn_cfg_)
with pytest.raises(ValueError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['flow_type'] = 'unsupport'
TPN(**tpn_cfg_)
target_shape = (32, 1)
target = generate_backbone_demo_inputs(target_shape).long().squeeze()
x0_shape = (32, 1024, 1, 4, 4)
x1_shape = (32, 2048, 1, 2, 2)
x0 = generate_backbone_demo_inputs(x0_shape)
x1 = generate_backbone_demo_inputs(x1_shape)
x = [x0, x1]
# ResNetTPN with 'cascade' flow_type
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cascade = TPN(**tpn_cfg_)
feat, loss_aux = tpn_cascade(x, target)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 1
# ResNetTPN with 'parallel' flow_type
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_parallel = TPN(flow_type='parallel', **tpn_cfg_)
feat, loss_aux = tpn_parallel(x, target)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 1
# ResNetTPN with 'cascade' flow_type and target is None
feat, loss_aux = tpn_cascade(x, None)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 0
# ResNetTPN with 'parallel' flow_type and target is None
feat, loss_aux = tpn_parallel(x, None)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 0