[6d389a]: / tests / test_models / test_localizers / test_ssn.py

Download this file

204 lines (184 with data), 8.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import mmcv
import pytest
import torch
from mmaction.models import build_localizer
def test_ssn_train():
train_cfg = mmcv.ConfigDict(
dict(
ssn=dict(
assigner=dict(
positive_iou_threshold=0.7,
background_iou_threshold=0.01,
incomplete_iou_threshold=0.3,
background_coverage_threshold=0.02,
incomplete_overlap_threshold=0.01),
sampler=dict(
num_per_video=8,
positive_ratio=1,
background_ratio=1,
incomplete_ratio=6,
add_gt_as_proposals=True),
loss_weight=dict(comp_loss_weight=0.1, reg_loss_weight=0.1),
debug=False)))
base_model_cfg = dict(
type='SSN',
backbone=dict(
type='ResNet', pretrained=None, depth=18, norm_eval=True),
spatial_type='avg',
dropout_ratio=0.8,
loss_cls=dict(type='SSNLoss'),
cls_head=dict(
type='SSNHead',
dropout_ratio=0.,
in_channels=512,
num_classes=20,
consensus=dict(
type='STPPTrain',
stpp_stage=(1, 1, 1),
num_segments_list=(2, 5, 2)),
use_regression=True),
train_cfg=train_cfg)
dropout_cfg = copy.deepcopy(base_model_cfg)
dropout_cfg['dropout_ratio'] = 0
dropout_cfg['cls_head']['dropout_ratio'] = 0.5
non_regression_cfg = copy.deepcopy(base_model_cfg)
non_regression_cfg['cls_head']['use_regression'] = False
imgs = torch.rand(1, 8, 9, 3, 224, 224)
proposal_scale_factor = torch.Tensor([[[1.0345, 1.0345], [1.0028, 0.0028],
[1.0013, 1.0013], [1.0008, 1.0008],
[0.3357, 1.0006], [1.0006, 1.0006],
[0.0818, 1.0005], [1.0030,
1.0030]]])
proposal_type = torch.Tensor([[0, 1, 1, 1, 1, 1, 1, 2]])
proposal_labels = torch.LongTensor([[8, 8, 8, 8, 8, 8, 8, 0]])
reg_targets = torch.Tensor([[[0.2929, 0.2694], [0.0000, 0.0000],
[0.0000, 0.0000], [0.0000, 0.0000],
[0.0000, 0.0000], [0.0000, 0.0000],
[0.0000, 0.0000], [0.0000, 0.0000]]])
localizer_ssn = build_localizer(base_model_cfg)
localizer_ssn_dropout = build_localizer(dropout_cfg)
localizer_ssn_non_regression = build_localizer(non_regression_cfg)
if torch.cuda.is_available():
localizer_ssn = localizer_ssn.cuda()
localizer_ssn_dropout = localizer_ssn_dropout.cuda()
localizer_ssn_non_regression = localizer_ssn_non_regression.cuda()
imgs = imgs.cuda()
proposal_scale_factor = proposal_scale_factor.cuda()
proposal_type = proposal_type.cuda()
proposal_labels = proposal_labels.cuda()
reg_targets = reg_targets.cuda()
# Train normal case
losses = localizer_ssn(
imgs,
proposal_scale_factor=proposal_scale_factor,
proposal_type=proposal_type,
proposal_labels=proposal_labels,
reg_targets=reg_targets)
assert isinstance(losses, dict)
# Train SSN without dropout in model, with dropout in head
losses = localizer_ssn_dropout(
imgs,
proposal_scale_factor=proposal_scale_factor,
proposal_type=proposal_type,
proposal_labels=proposal_labels,
reg_targets=reg_targets)
assert isinstance(losses, dict)
# Train SSN model without regression
losses = localizer_ssn_non_regression(
imgs,
proposal_scale_factor=proposal_scale_factor,
proposal_type=proposal_type,
proposal_labels=proposal_labels,
reg_targets=reg_targets)
assert isinstance(losses, dict)
def test_ssn_test():
test_cfg = mmcv.ConfigDict(
dict(
ssn=dict(
sampler=dict(test_interval=6, batch_size=16),
evaluater=dict(
top_k=2000,
nms=0.2,
softmax_before_filter=True,
cls_score_dict=None,
cls_top_k=2))))
base_model_cfg = dict(
type='SSN',
backbone=dict(
type='ResNet', pretrained=None, depth=18, norm_eval=True),
spatial_type='avg',
dropout_ratio=0.8,
cls_head=dict(
type='SSNHead',
dropout_ratio=0.,
in_channels=512,
num_classes=20,
consensus=dict(type='STPPTest', stpp_stage=(1, 1, 1)),
use_regression=True),
test_cfg=test_cfg)
maxpool_model_cfg = copy.deepcopy(base_model_cfg)
maxpool_model_cfg['spatial_type'] = 'max'
non_regression_cfg = copy.deepcopy(base_model_cfg)
non_regression_cfg['cls_head']['use_regression'] = False
non_regression_cfg['cls_head']['consensus']['use_regression'] = False
tuple_stage_cfg = copy.deepcopy(base_model_cfg)
tuple_stage_cfg['cls_head']['consensus']['stpp_stage'] = (1, (1, 2), 1)
str_stage_cfg = copy.deepcopy(base_model_cfg)
str_stage_cfg['cls_head']['consensus']['stpp_stage'] = ('error', )
imgs = torch.rand(1, 8, 3, 224, 224)
relative_proposal_list = torch.Tensor([[[0.2500, 0.6250], [0.3750,
0.7500]]])
scale_factor_list = torch.Tensor([[[1.0000, 1.0000], [1.0000, 0.2661]]])
proposal_tick_list = torch.LongTensor([[[1, 2, 5, 7], [20, 30, 60, 80]]])
reg_norm_consts = torch.Tensor([[[-0.0603, 0.0325], [0.0752, 0.1596]]])
localizer_ssn = build_localizer(base_model_cfg)
localizer_ssn_maxpool = build_localizer(maxpool_model_cfg)
localizer_ssn_non_regression = build_localizer(non_regression_cfg)
localizer_ssn_tuple_stage_cfg = build_localizer(tuple_stage_cfg)
with pytest.raises(ValueError):
build_localizer(str_stage_cfg)
if torch.cuda.is_available():
localizer_ssn = localizer_ssn.cuda()
localizer_ssn_maxpool = localizer_ssn_maxpool.cuda()
localizer_ssn_non_regression = localizer_ssn_non_regression.cuda()
localizer_ssn_tuple_stage_cfg = localizer_ssn_tuple_stage_cfg.cuda()
imgs = imgs.cuda()
relative_proposal_list = relative_proposal_list.cuda()
scale_factor_list = scale_factor_list.cuda()
proposal_tick_list = proposal_tick_list.cuda()
reg_norm_consts = reg_norm_consts.cuda()
with torch.no_grad():
# Test normal case
localizer_ssn(
imgs,
relative_proposal_list=relative_proposal_list,
scale_factor_list=scale_factor_list,
proposal_tick_list=proposal_tick_list,
reg_norm_consts=reg_norm_consts,
return_loss=False)
# Test SSN model with max spatial pooling
localizer_ssn_maxpool(
imgs,
relative_proposal_list=relative_proposal_list,
scale_factor_list=scale_factor_list,
proposal_tick_list=proposal_tick_list,
reg_norm_consts=reg_norm_consts,
return_loss=False)
# Test SSN model without regression
localizer_ssn_non_regression(
imgs,
relative_proposal_list=relative_proposal_list,
scale_factor_list=scale_factor_list,
proposal_tick_list=proposal_tick_list,
reg_norm_consts=reg_norm_consts,
return_loss=False)
# Test SSN model with tuple stage cfg.
localizer_ssn_tuple_stage_cfg(
imgs,
relative_proposal_list=relative_proposal_list,
scale_factor_list=scale_factor_list,
proposal_tick_list=proposal_tick_list,
reg_norm_consts=reg_norm_consts,
return_loss=False)