# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmaction.models import build_localizer
from ..base import get_localizer_cfg
def test_pem():
model_cfg = get_localizer_cfg(
'bsn/bsn_pem_400x100_1x16_20e_activitynet_feature.py')
localizer_pem = build_localizer(model_cfg.model)
bsp_feature = torch.rand(8, 100, 32)
reference_temporal_iou = torch.rand(8, 100)
losses = localizer_pem(bsp_feature, reference_temporal_iou)
assert isinstance(losses, dict)
# Test forward test
tmin = torch.rand(100)
tmax = torch.rand(100)
tmin_score = torch.rand(100)
tmax_score = torch.rand(100)
video_meta = [
dict(
video_name='v_test',
duration_second=100,
duration_frame=1000,
annotations=[{
'segment': [0.3, 0.6],
'label': 'Rock climbing'
}],
feature_frame=900)
]
with torch.no_grad():
for one_bsp_feature in bsp_feature:
one_bsp_feature = one_bsp_feature.reshape(1, 100, 32)
localizer_pem(
one_bsp_feature,
tmin=tmin,
tmax=tmax,
tmin_score=tmin_score,
tmax_score=tmax_score,
video_meta=video_meta,
return_loss=False)