# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from unittest.mock import Mock, patch
import numpy as np
import pytest
import torch
import torch.nn as nn
import mmaction
from mmaction.models import (ACRNHead, AudioTSNHead, BBoxHeadAVA, FBOHead,
I3DHead, LFBInferHead, SlowFastHead, STGCNHead,
TimeSformerHead, TPNHead, TRNHead, TSMHead,
TSNHead, X3DHead)
from .base import generate_backbone_demo_inputs
def test_i3d_head():
"""Test loss method, layer construction, attributes and forward function in
i3d head."""
i3d_head = I3DHead(num_classes=4, in_channels=2048)
i3d_head.init_weights()
assert i3d_head.num_classes == 4
assert i3d_head.dropout_ratio == 0.5
assert i3d_head.in_channels == 2048
assert i3d_head.init_std == 0.01
assert isinstance(i3d_head.dropout, nn.Dropout)
assert i3d_head.dropout.p == i3d_head.dropout_ratio
assert isinstance(i3d_head.fc_cls, nn.Linear)
assert i3d_head.fc_cls.in_features == i3d_head.in_channels
assert i3d_head.fc_cls.out_features == i3d_head.num_classes
assert isinstance(i3d_head.avg_pool, nn.AdaptiveAvgPool3d)
assert i3d_head.avg_pool.output_size == (1, 1, 1)
input_shape = (3, 2048, 4, 7, 7)
feat = torch.rand(input_shape)
# i3d head inference
cls_scores = i3d_head(feat)
assert cls_scores.shape == torch.Size([3, 4])
def test_bbox_head_ava():
"""Test loss method, layer construction, attributes and forward function in
bbox head."""
with pytest.raises(TypeError):
# topk must be None, int or tuple[int]
BBoxHeadAVA(topk=0.1)
with pytest.raises(AssertionError):
# topk should be smaller than num_classes
BBoxHeadAVA(num_classes=5, topk=(3, 5))
bbox_head = BBoxHeadAVA(in_channels=10, num_classes=4, topk=1)
input = torch.randn([3, 10, 2, 2, 2])
ret, _ = bbox_head(input)
assert ret.shape == (3, 4)
bbox_head = BBoxHeadAVA()
bbox_head.init_weights()
bbox_head = BBoxHeadAVA(temporal_pool_type='max', spatial_pool_type='avg')
bbox_head.init_weights()
cls_score = torch.tensor(
[[0.568, -0.162, 0.273, -0.390, 0.447, 0.102, -0.409],
[2.388, 0.609, 0.369, 1.630, -0.808, -0.212, 0.296],
[0.252, -0.533, -0.644, -0.591, 0.148, 0.963, -0.525],
[0.134, -0.311, -0.764, -0.752, 0.656, -1.517, 0.185]])
labels = torch.tensor([[0., 0., 1., 0., 0., 1., 0.],
[0., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 1., 0., 1.],
[0., 0., 1., 1., 0., 0., 1.]])
label_weights = torch.tensor([1., 1., 1., 1.])
losses = bbox_head.loss(
cls_score=cls_score,
bbox_pred=None,
rois=None,
labels=labels,
label_weights=label_weights)
assert torch.isclose(losses['loss_action_cls'], torch.tensor(0.7162495))
assert torch.isclose(losses['recall@thr=0.5'], torch.tensor(0.6666666))
assert torch.isclose(losses['prec@thr=0.5'], torch.tensor(0.4791665))
assert torch.isclose(losses['recall@top3'], torch.tensor(0.75))
assert torch.isclose(losses['prec@top3'], torch.tensor(0.5))
assert torch.isclose(losses['recall@top5'], torch.tensor(1.0))
assert torch.isclose(losses['prec@top5'], torch.tensor(0.45))
rois = torch.tensor([[0.0, 0.1, 0.2, 0.3, 0.4], [0.0, 0.5, 0.6, 0.7, 0.8]])
rois[1::2] *= 380
rois[2::2] *= 220
crop_quadruple = np.array([0.1, 0.2, 0.8, 0.7])
cls_score = torch.tensor([0.995, 0.728])
img_shape = (320, 480)
flip = True
bboxes, scores = bbox_head.get_det_bboxes(
rois=rois,
cls_score=cls_score,
img_shape=img_shape,
flip=flip,
crop_quadruple=crop_quadruple)
assert torch.all(
torch.isclose(
bboxes,
torch.tensor([[0.89783341, 0.20043750, 0.89816672, 0.20087500],
[0.45499998, 0.69875002, 0.58166665, 0.86499995]])))
assert torch.all(
torch.isclose(scores, torch.tensor([0.73007441, 0.67436624])))
def test_x3d_head():
"""Test loss method, layer construction, attributes and forward function in
x3d head."""
x3d_head = X3DHead(in_channels=432, num_classes=4, fc1_bias=False)
x3d_head.init_weights()
assert x3d_head.num_classes == 4
assert x3d_head.dropout_ratio == 0.5
assert x3d_head.in_channels == 432
assert x3d_head.init_std == 0.01
assert isinstance(x3d_head.dropout, nn.Dropout)
assert x3d_head.dropout.p == x3d_head.dropout_ratio
assert isinstance(x3d_head.fc1, nn.Linear)
assert x3d_head.fc1.in_features == x3d_head.in_channels
assert x3d_head.fc1.out_features == x3d_head.mid_channels
assert x3d_head.fc1.bias is None
assert isinstance(x3d_head.fc2, nn.Linear)
assert x3d_head.fc2.in_features == x3d_head.mid_channels
assert x3d_head.fc2.out_features == x3d_head.num_classes
assert isinstance(x3d_head.pool, nn.AdaptiveAvgPool3d)
assert x3d_head.pool.output_size == (1, 1, 1)
input_shape = (3, 432, 4, 7, 7)
feat = torch.rand(input_shape)
# i3d head inference
cls_scores = x3d_head(feat)
assert cls_scores.shape == torch.Size([3, 4])
def test_slowfast_head():
"""Test loss method, layer construction, attributes and forward function in
slowfast head."""
sf_head = SlowFastHead(num_classes=4, in_channels=2304)
sf_head.init_weights()
assert sf_head.num_classes == 4
assert sf_head.dropout_ratio == 0.8
assert sf_head.in_channels == 2304
assert sf_head.init_std == 0.01
assert isinstance(sf_head.dropout, nn.Dropout)
assert sf_head.dropout.p == sf_head.dropout_ratio
assert isinstance(sf_head.fc_cls, nn.Linear)
assert sf_head.fc_cls.in_features == sf_head.in_channels
assert sf_head.fc_cls.out_features == sf_head.num_classes
assert isinstance(sf_head.avg_pool, nn.AdaptiveAvgPool3d)
assert sf_head.avg_pool.output_size == (1, 1, 1)
input_shape = (3, 2048, 32, 7, 7)
feat_slow = torch.rand(input_shape)
input_shape = (3, 256, 4, 7, 7)
feat_fast = torch.rand(input_shape)
sf_head = SlowFastHead(num_classes=4, in_channels=2304)
cls_scores = sf_head((feat_slow, feat_fast))
assert cls_scores.shape == torch.Size([3, 4])
def test_tsn_head():
"""Test loss method, layer construction, attributes and forward function in
tsn head."""
tsn_head = TSNHead(num_classes=4, in_channels=2048)
tsn_head.init_weights()
assert tsn_head.num_classes == 4
assert tsn_head.dropout_ratio == 0.4
assert tsn_head.in_channels == 2048
assert tsn_head.init_std == 0.01
assert tsn_head.consensus.dim == 1
assert tsn_head.spatial_type == 'avg'
assert isinstance(tsn_head.dropout, nn.Dropout)
assert tsn_head.dropout.p == tsn_head.dropout_ratio
assert isinstance(tsn_head.fc_cls, nn.Linear)
assert tsn_head.fc_cls.in_features == tsn_head.in_channels
assert tsn_head.fc_cls.out_features == tsn_head.num_classes
assert isinstance(tsn_head.avg_pool, nn.AdaptiveAvgPool2d)
assert tsn_head.avg_pool.output_size == (1, 1)
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# tsn head inference
num_segs = input_shape[0]
cls_scores = tsn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
# Test multi-class recognition
multi_tsn_head = TSNHead(
num_classes=4,
in_channels=2048,
loss_cls=dict(type='BCELossWithLogits', loss_weight=160.0),
multi_class=True,
label_smooth_eps=0.01)
multi_tsn_head.init_weights()
assert multi_tsn_head.num_classes == 4
assert multi_tsn_head.dropout_ratio == 0.4
assert multi_tsn_head.in_channels == 2048
assert multi_tsn_head.init_std == 0.01
assert multi_tsn_head.consensus.dim == 1
assert isinstance(multi_tsn_head.dropout, nn.Dropout)
assert multi_tsn_head.dropout.p == multi_tsn_head.dropout_ratio
assert isinstance(multi_tsn_head.fc_cls, nn.Linear)
assert multi_tsn_head.fc_cls.in_features == multi_tsn_head.in_channels
assert multi_tsn_head.fc_cls.out_features == multi_tsn_head.num_classes
assert isinstance(multi_tsn_head.avg_pool, nn.AdaptiveAvgPool2d)
assert multi_tsn_head.avg_pool.output_size == (1, 1)
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# multi-class tsn head inference
num_segs = input_shape[0]
cls_scores = tsn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
def test_tsn_head_audio():
"""Test loss method, layer construction, attributes and forward function in
tsn head."""
tsn_head_audio = AudioTSNHead(num_classes=4, in_channels=5)
tsn_head_audio.init_weights()
assert tsn_head_audio.num_classes == 4
assert tsn_head_audio.dropout_ratio == 0.4
assert tsn_head_audio.in_channels == 5
assert tsn_head_audio.init_std == 0.01
assert tsn_head_audio.spatial_type == 'avg'
assert isinstance(tsn_head_audio.dropout, nn.Dropout)
assert tsn_head_audio.dropout.p == tsn_head_audio.dropout_ratio
assert isinstance(tsn_head_audio.fc_cls, nn.Linear)
assert tsn_head_audio.fc_cls.in_features == tsn_head_audio.in_channels
assert tsn_head_audio.fc_cls.out_features == tsn_head_audio.num_classes
assert isinstance(tsn_head_audio.avg_pool, nn.AdaptiveAvgPool2d)
assert tsn_head_audio.avg_pool.output_size == (1, 1)
input_shape = (8, 5, 7, 7)
feat = torch.rand(input_shape)
# tsn head inference
cls_scores = tsn_head_audio(feat)
assert cls_scores.shape == torch.Size([8, 4])
def test_tsm_head():
"""Test loss method, layer construction, attributes and forward function in
tsm head."""
tsm_head = TSMHead(num_classes=4, in_channels=2048)
tsm_head.init_weights()
assert tsm_head.num_classes == 4
assert tsm_head.dropout_ratio == 0.8
assert tsm_head.in_channels == 2048
assert tsm_head.init_std == 0.001
assert tsm_head.consensus.dim == 1
assert tsm_head.spatial_type == 'avg'
assert isinstance(tsm_head.dropout, nn.Dropout)
assert tsm_head.dropout.p == tsm_head.dropout_ratio
assert isinstance(tsm_head.fc_cls, nn.Linear)
assert tsm_head.fc_cls.in_features == tsm_head.in_channels
assert tsm_head.fc_cls.out_features == tsm_head.num_classes
assert isinstance(tsm_head.avg_pool, nn.AdaptiveAvgPool2d)
assert tsm_head.avg_pool.output_size == 1
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# tsm head inference with no init
num_segs = input_shape[0]
cls_scores = tsm_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
# tsm head inference with init
tsm_head = TSMHead(num_classes=4, in_channels=2048, temporal_pool=True)
tsm_head.init_weights()
cls_scores = tsm_head(feat, num_segs)
assert cls_scores.shape == torch.Size([2, 4])
def test_trn_head():
"""Test loss method, layer construction, attributes and forward function in
trn head."""
from mmaction.models.heads.trn_head import (RelationModule,
RelationModuleMultiScale)
trn_head = TRNHead(num_classes=4, in_channels=2048, relation_type='TRN')
trn_head.init_weights()
assert trn_head.num_classes == 4
assert trn_head.dropout_ratio == 0.8
assert trn_head.in_channels == 2048
assert trn_head.init_std == 0.001
assert trn_head.spatial_type == 'avg'
relation_module = trn_head.consensus
assert isinstance(relation_module, RelationModule)
assert relation_module.hidden_dim == 256
assert isinstance(relation_module.classifier[3], nn.Linear)
assert relation_module.classifier[3].out_features == trn_head.num_classes
assert trn_head.dropout.p == trn_head.dropout_ratio
assert isinstance(trn_head.dropout, nn.Dropout)
assert isinstance(trn_head.fc_cls, nn.Linear)
assert trn_head.fc_cls.in_features == trn_head.in_channels
assert trn_head.fc_cls.out_features == trn_head.hidden_dim
assert isinstance(trn_head.avg_pool, nn.AdaptiveAvgPool2d)
assert trn_head.avg_pool.output_size == 1
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# tsm head inference with no init
num_segs = input_shape[0]
cls_scores = trn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
# tsm head inference with init
trn_head = TRNHead(
num_classes=4,
in_channels=2048,
num_segments=8,
relation_type='TRNMultiScale')
trn_head.init_weights()
assert isinstance(trn_head.consensus, RelationModuleMultiScale)
assert trn_head.consensus.scales == range(8, 1, -1)
cls_scores = trn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
with pytest.raises(ValueError):
trn_head = TRNHead(
num_classes=4,
in_channels=2048,
num_segments=8,
relation_type='RelationModlue')
def test_timesformer_head():
"""Test loss method, layer construction, attributes and forward function in
timesformer head."""
timesformer_head = TimeSformerHead(num_classes=4, in_channels=64)
timesformer_head.init_weights()
assert timesformer_head.num_classes == 4
assert timesformer_head.in_channels == 64
assert timesformer_head.init_std == 0.02
input_shape = (2, 64)
feat = torch.rand(input_shape)
cls_scores = timesformer_head(feat)
assert cls_scores.shape == torch.Size([2, 4])
@patch.object(mmaction.models.LFBInferHead, '__del__', Mock)
def test_lfb_infer_head():
"""Test layer construction, attributes and forward function in lfb infer
head."""
with tempfile.TemporaryDirectory() as tmpdir:
lfb_infer_head = LFBInferHead(
lfb_prefix_path=tmpdir, use_half_precision=True)
lfb_infer_head.init_weights()
st_feat_shape = (3, 16, 1, 8, 8)
st_feat = generate_backbone_demo_inputs(st_feat_shape)
rois = torch.cat(
(torch.tensor([0, 1, 0]).float().view(3, 1), torch.randn(3, 4)), dim=1)
img_metas = [dict(img_key='video_1,777'), dict(img_key='video_2, 888')]
result = lfb_infer_head(st_feat, rois, img_metas)
assert st_feat.equal(result)
assert len(lfb_infer_head.all_features) == 3
assert lfb_infer_head.all_features[0].shape == (16, 1, 1, 1)
def test_fbo_head():
"""Test layer construction, attributes and forward function in fbo head."""
lfb_prefix_path = osp.normpath(
osp.join(osp.dirname(__file__), '../data/lfb'))
st_feat_shape = (1, 16, 1, 8, 8)
st_feat = generate_backbone_demo_inputs(st_feat_shape)
rois = torch.randn(1, 5)
rois[0][0] = 0
img_metas = [dict(img_key='video_1, 930')]
# non local fbo
fbo_head = FBOHead(
lfb_cfg=dict(
lfb_prefix_path=lfb_prefix_path,
max_num_sampled_feat=5,
window_size=60,
lfb_channels=16,
dataset_modes=('unittest'),
device='cpu'),
fbo_cfg=dict(
type='non_local',
st_feat_channels=16,
lt_feat_channels=16,
latent_channels=8,
num_st_feat=1,
num_lt_feat=5 * 60,
))
fbo_head.init_weights()
out = fbo_head(st_feat, rois, img_metas)
assert out.shape == (1, 24, 1, 1, 1)
# avg fbo
fbo_head = FBOHead(
lfb_cfg=dict(
lfb_prefix_path=lfb_prefix_path,
max_num_sampled_feat=5,
window_size=60,
lfb_channels=16,
dataset_modes=('unittest'),
device='cpu'),
fbo_cfg=dict(type='avg'))
fbo_head.init_weights()
out = fbo_head(st_feat, rois, img_metas)
assert out.shape == (1, 32, 1, 1, 1)
# max fbo
fbo_head = FBOHead(
lfb_cfg=dict(
lfb_prefix_path=lfb_prefix_path,
max_num_sampled_feat=5,
window_size=60,
lfb_channels=16,
dataset_modes=('unittest'),
device='cpu'),
fbo_cfg=dict(type='max'))
fbo_head.init_weights()
out = fbo_head(st_feat, rois, img_metas)
assert out.shape == (1, 32, 1, 1, 1)
def test_tpn_head():
"""Test loss method, layer construction, attributes and forward function in
tpn head."""
tpn_head = TPNHead(num_classes=4, in_channels=2048)
tpn_head.init_weights()
assert hasattr(tpn_head, 'avg_pool2d')
assert hasattr(tpn_head, 'avg_pool3d')
assert isinstance(tpn_head.avg_pool3d, nn.AdaptiveAvgPool3d)
assert tpn_head.avg_pool3d.output_size == (1, 1, 1)
assert tpn_head.avg_pool2d is None
input_shape = (4, 2048, 7, 7)
feat = torch.rand(input_shape)
# tpn head inference with num_segs
num_segs = 2
cls_scores = tpn_head(feat, num_segs)
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
assert cls_scores.shape == torch.Size([2, 4])
# tpn head inference with no num_segs
input_shape = (2, 2048, 3, 7, 7)
feat = torch.rand(input_shape)
cls_scores = tpn_head(feat)
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
assert cls_scores.shape == torch.Size([2, 4])
def test_acrn_head():
roi_feat = torch.randn(4, 16, 1, 7, 7)
feat = torch.randn(2, 16, 1, 16, 16)
rois = torch.Tensor([[0, 2.2268, 0.5926, 10.6142, 8.0029],
[0, 2.2577, 0.1519, 11.6451, 8.9282],
[1, 1.9874, 1.0000, 11.1585, 8.2840],
[1, 3.3338, 3.7166, 8.4174, 11.2785]])
acrn_head = ACRNHead(32, 16)
acrn_head.init_weights()
new_feat = acrn_head(roi_feat, feat, rois)
assert new_feat.shape == (4, 16, 1, 16, 16)
acrn_head = ACRNHead(32, 16, stride=2)
new_feat = acrn_head(roi_feat, feat, rois)
assert new_feat.shape == (4, 16, 1, 8, 8)
acrn_head = ACRNHead(32, 16, stride=2, num_convs=2)
new_feat = acrn_head(roi_feat, feat, rois)
assert new_feat.shape == (4, 16, 1, 8, 8)
def test_stgcn_head():
"""Test loss method, layer construction, attributes and forward function in
stgcn head."""
with pytest.raises(NotImplementedError):
# spatial_type not in ['avg', 'max']
stgcn_head = STGCNHead(
num_classes=60, in_channels=256, spatial_type='min')
stgcn_head.init_weights()
# spatial_type='avg'
stgcn_head = STGCNHead(num_classes=60, in_channels=256, spatial_type='avg')
stgcn_head.init_weights()
assert stgcn_head.num_classes == 60
assert stgcn_head.in_channels == 256
input_shape = (2, 256, 75, 17)
feat = torch.rand(input_shape)
cls_scores = stgcn_head(feat)
assert cls_scores.shape == torch.Size([1, 60])
# spatial_type='max'
stgcn_head = STGCNHead(num_classes=60, in_channels=256, spatial_type='max')
stgcn_head.init_weights()
assert stgcn_head.num_classes == 60
assert stgcn_head.in_channels == 256
input_shape = (2, 256, 75, 17)
feat = torch.rand(input_shape)
cls_scores = stgcn_head(feat)
assert cls_scores.shape == torch.Size([1, 60])