# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmaction.models import build_recognizer
from mmaction.utils.gradcam_utils import GradCAM
from .base import generate_gradcam_inputs, get_recognizer_cfg
def _get_target_shapes(input_shape, num_classes=400, model_type='2D'):
if model_type not in ['2D', '3D']:
raise ValueError(f'Data type {model_type} is not available')
preds_target_shape = (input_shape[0], num_classes)
if model_type == '3D':
# input shape (batch_size, num_crops*num_clips, C, clip_len, H, W)
# target shape (batch_size*num_crops*num_clips, clip_len, H, W, C)
blended_imgs_target_shape = (input_shape[0] * input_shape[1],
input_shape[3], input_shape[4],
input_shape[5], input_shape[2])
else:
# input shape (batch_size, num_segments, C, H, W)
# target shape (batch_size, num_segments, H, W, C)
blended_imgs_target_shape = (input_shape[0], input_shape[1],
input_shape[3], input_shape[4],
input_shape[2])
return blended_imgs_target_shape, preds_target_shape
def _do_test_2D_models(recognizer,
target_layer_name,
input_shape,
num_classes=400,
device='cpu'):
demo_inputs = generate_gradcam_inputs(input_shape)
demo_inputs['imgs'] = demo_inputs['imgs'].to(device)
demo_inputs['label'] = demo_inputs['label'].to(device)
recognizer = recognizer.to(device)
gradcam = GradCAM(recognizer, target_layer_name)
blended_imgs_target_shape, preds_target_shape = _get_target_shapes(
input_shape, num_classes=num_classes, model_type='2D')
blended_imgs, preds = gradcam(demo_inputs)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
blended_imgs, preds = gradcam(demo_inputs, True)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
def _do_test_3D_models(recognizer,
target_layer_name,
input_shape,
num_classes=400):
blended_imgs_target_shape, preds_target_shape = _get_target_shapes(
input_shape, num_classes=num_classes, model_type='3D')
demo_inputs = generate_gradcam_inputs(input_shape, '3D')
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
recognizer = recognizer.cuda()
demo_inputs['imgs'] = demo_inputs['imgs'].cuda()
demo_inputs['label'] = demo_inputs['label'].cuda()
gradcam = GradCAM(recognizer, target_layer_name)
blended_imgs, preds = gradcam(demo_inputs)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
blended_imgs, preds = gradcam(demo_inputs, True)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
else:
gradcam = GradCAM(recognizer, target_layer_name)
blended_imgs, preds = gradcam(demo_inputs)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
blended_imgs, preds = gradcam(demo_inputs, True)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
def test_tsn():
config = get_recognizer_cfg('tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 25, 3, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_2D_models(recognizer, target_layer_name, input_shape)
def test_i3d():
config = get_recognizer_cfg('i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = [1, 1, 3, 32, 32, 32]
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_r2plus1d():
config = get_recognizer_cfg(
'r2plus1d/r2plus1d_r34_8x8x1_180e_kinetics400_rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
config.model['backbone']['norm_cfg'] = dict(type='BN3d')
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 3, 3, 8, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_slowfast():
config = get_recognizer_cfg(
'slowfast/slowfast_r50_4x16x1_256e_kinetics400_rgb.py')
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 32, 32, 32)
target_layer_name = 'backbone/slow_path/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_tsm():
config = get_recognizer_cfg('tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
target_layer_name = 'backbone/layer4/1/relu'
# base config
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 8, 3, 32, 32)
_do_test_2D_models(recognizer, target_layer_name, input_shape)
# test twice sample + 3 crops, 2*3*8=48
config.model.test_cfg = dict(average_clips='prob')
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 48, 3, 32, 32)
_do_test_2D_models(recognizer, target_layer_name, input_shape)
def test_csn():
config = get_recognizer_cfg(
'csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 32, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_tpn():
target_layer_name = 'backbone/layer4/1/relu'
config = get_recognizer_cfg('tpn/tpn_tsm_r50_1x1x8_150e_sthv1_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 8, 3, 32, 32)
_do_test_2D_models(recognizer, target_layer_name, input_shape, 174)
config = get_recognizer_cfg(
'tpn/tpn_slowonly_r50_8x8x1_150e_kinetics_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 3, 3, 8, 32, 32)
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_c3d():
config = get_recognizer_cfg('c3d/c3d_sports1m_16x1x1_45e_ucf101_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 16, 112, 112)
target_layer_name = 'backbone/conv5a/activate'
_do_test_3D_models(recognizer, target_layer_name, input_shape, 101)
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
def test_tin():
config = get_recognizer_cfg(
'tin/tin_tsm_finetune_r50_1x1x8_50e_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
target_layer_name = 'backbone/layer4/1/relu'
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 8, 3, 64, 64)
_do_test_2D_models(
recognizer, target_layer_name, input_shape, device='cuda:0')
def test_x3d():
config = get_recognizer_cfg('x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 13, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)