[6d389a]: / tests / test_models / test_gradcam.py

Download this file

231 lines (173 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmaction.models import build_recognizer
from mmaction.utils.gradcam_utils import GradCAM
from .base import generate_gradcam_inputs, get_recognizer_cfg
def _get_target_shapes(input_shape, num_classes=400, model_type='2D'):
if model_type not in ['2D', '3D']:
raise ValueError(f'Data type {model_type} is not available')
preds_target_shape = (input_shape[0], num_classes)
if model_type == '3D':
# input shape (batch_size, num_crops*num_clips, C, clip_len, H, W)
# target shape (batch_size*num_crops*num_clips, clip_len, H, W, C)
blended_imgs_target_shape = (input_shape[0] * input_shape[1],
input_shape[3], input_shape[4],
input_shape[5], input_shape[2])
else:
# input shape (batch_size, num_segments, C, H, W)
# target shape (batch_size, num_segments, H, W, C)
blended_imgs_target_shape = (input_shape[0], input_shape[1],
input_shape[3], input_shape[4],
input_shape[2])
return blended_imgs_target_shape, preds_target_shape
def _do_test_2D_models(recognizer,
target_layer_name,
input_shape,
num_classes=400,
device='cpu'):
demo_inputs = generate_gradcam_inputs(input_shape)
demo_inputs['imgs'] = demo_inputs['imgs'].to(device)
demo_inputs['label'] = demo_inputs['label'].to(device)
recognizer = recognizer.to(device)
gradcam = GradCAM(recognizer, target_layer_name)
blended_imgs_target_shape, preds_target_shape = _get_target_shapes(
input_shape, num_classes=num_classes, model_type='2D')
blended_imgs, preds = gradcam(demo_inputs)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
blended_imgs, preds = gradcam(demo_inputs, True)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
def _do_test_3D_models(recognizer,
target_layer_name,
input_shape,
num_classes=400):
blended_imgs_target_shape, preds_target_shape = _get_target_shapes(
input_shape, num_classes=num_classes, model_type='3D')
demo_inputs = generate_gradcam_inputs(input_shape, '3D')
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
recognizer = recognizer.cuda()
demo_inputs['imgs'] = demo_inputs['imgs'].cuda()
demo_inputs['label'] = demo_inputs['label'].cuda()
gradcam = GradCAM(recognizer, target_layer_name)
blended_imgs, preds = gradcam(demo_inputs)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
blended_imgs, preds = gradcam(demo_inputs, True)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
else:
gradcam = GradCAM(recognizer, target_layer_name)
blended_imgs, preds = gradcam(demo_inputs)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
blended_imgs, preds = gradcam(demo_inputs, True)
assert blended_imgs.size() == blended_imgs_target_shape
assert preds.size() == preds_target_shape
def test_tsn():
config = get_recognizer_cfg('tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 25, 3, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_2D_models(recognizer, target_layer_name, input_shape)
def test_i3d():
config = get_recognizer_cfg('i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = [1, 1, 3, 32, 32, 32]
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_r2plus1d():
config = get_recognizer_cfg(
'r2plus1d/r2plus1d_r34_8x8x1_180e_kinetics400_rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
config.model['backbone']['norm_cfg'] = dict(type='BN3d')
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 3, 3, 8, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_slowfast():
config = get_recognizer_cfg(
'slowfast/slowfast_r50_4x16x1_256e_kinetics400_rgb.py')
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 32, 32, 32)
target_layer_name = 'backbone/slow_path/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_tsm():
config = get_recognizer_cfg('tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
target_layer_name = 'backbone/layer4/1/relu'
# base config
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 8, 3, 32, 32)
_do_test_2D_models(recognizer, target_layer_name, input_shape)
# test twice sample + 3 crops, 2*3*8=48
config.model.test_cfg = dict(average_clips='prob')
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 48, 3, 32, 32)
_do_test_2D_models(recognizer, target_layer_name, input_shape)
def test_csn():
config = get_recognizer_cfg(
'csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py')
config.model['backbone']['pretrained2d'] = False
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 32, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_tpn():
target_layer_name = 'backbone/layer4/1/relu'
config = get_recognizer_cfg('tpn/tpn_tsm_r50_1x1x8_150e_sthv1_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 8, 3, 32, 32)
_do_test_2D_models(recognizer, target_layer_name, input_shape, 174)
config = get_recognizer_cfg(
'tpn/tpn_slowonly_r50_8x8x1_150e_kinetics_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 3, 3, 8, 32, 32)
_do_test_3D_models(recognizer, target_layer_name, input_shape)
def test_c3d():
config = get_recognizer_cfg('c3d/c3d_sports1m_16x1x1_45e_ucf101_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 16, 112, 112)
target_layer_name = 'backbone/conv5a/activate'
_do_test_3D_models(recognizer, target_layer_name, input_shape, 101)
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
def test_tin():
config = get_recognizer_cfg(
'tin/tin_tsm_finetune_r50_1x1x8_50e_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
target_layer_name = 'backbone/layer4/1/relu'
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 8, 3, 64, 64)
_do_test_2D_models(
recognizer, target_layer_name, input_shape, device='cuda:0')
def test_x3d():
config = get_recognizer_cfg('x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py')
config.model['backbone']['pretrained'] = None
recognizer = build_recognizer(config.model)
recognizer.cfg = config
input_shape = (1, 1, 3, 13, 32, 32)
target_layer_name = 'backbone/layer4/1/relu'
_do_test_3D_models(recognizer, target_layer_name, input_shape)