[6d389a]: / tests / test_models / base.py

Download this file

168 lines (127 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmcv
import numpy as np
import torch
from mmcv.utils import _BatchNorm
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def generate_backbone_demo_inputs(input_shape=(1, 3, 64, 64)):
"""Create a superset of inputs needed to run backbone.
Args:
input_shape (tuple): input batch dimensions.
Default: (1, 3, 64, 64).
"""
imgs = np.random.random(input_shape)
imgs = torch.FloatTensor(imgs)
return imgs
def generate_recognizer_demo_inputs(
input_shape=(1, 3, 3, 224, 224), model_type='2D'):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple): input batch dimensions.
Default: (1, 250, 3, 224, 224).
model_type (str): Model type for data generation, from {'2D', '3D'}.
Default:'2D'
"""
if len(input_shape) == 5:
(N, L, _, _, _) = input_shape
elif len(input_shape) == 6:
(N, M, _, L, _, _) = input_shape
imgs = np.random.random(input_shape)
if model_type == '2D' or model_type == 'skeleton':
gt_labels = torch.LongTensor([2] * N)
elif model_type == '3D':
gt_labels = torch.LongTensor([2] * M)
elif model_type == 'audio':
gt_labels = torch.LongTensor([2] * L)
else:
raise ValueError(f'Data type {model_type} is not available')
inputs = {'imgs': torch.FloatTensor(imgs), 'gt_labels': gt_labels}
return inputs
def generate_detector_demo_inputs(
input_shape=(1, 3, 4, 224, 224), num_classes=81, train=True,
device='cpu'):
num_samples = input_shape[0]
if not train:
assert num_samples == 1
def random_box(n):
box = torch.rand(n, 4) * 0.5
box[:, 2:] += 0.5
box[:, 0::2] *= input_shape[3]
box[:, 1::2] *= input_shape[4]
if device == 'cuda':
box = box.cuda()
return box
def random_label(n):
label = torch.randn(n, num_classes)
label = (label > 0.8).type(torch.float32)
label[:, 0] = 0
if device == 'cuda':
label = label.cuda()
return label
img = torch.FloatTensor(np.random.random(input_shape))
if device == 'cuda':
img = img.cuda()
proposals = [random_box(2) for i in range(num_samples)]
gt_bboxes = [random_box(2) for i in range(num_samples)]
gt_labels = [random_label(2) for i in range(num_samples)]
img_metas = [dict(img_shape=input_shape[-2:]) for i in range(num_samples)]
if train:
return dict(
img=img,
proposals=proposals,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
img_metas=img_metas)
return dict(img=[img], proposals=[proposals], img_metas=[img_metas])
def generate_gradcam_inputs(input_shape=(1, 3, 3, 224, 224), model_type='2D'):
"""Create a superset of inputs needed to run gradcam.
Args:
input_shape (tuple[int]): input batch dimensions.
Default: (1, 3, 3, 224, 224).
model_type (str): Model type for data generation, from {'2D', '3D'}.
Default:'2D'
return:
dict: model inputs, including two keys, ``imgs`` and ``label``.
"""
imgs = np.random.random(input_shape)
if model_type in ['2D', '3D']:
gt_labels = torch.LongTensor([2] * input_shape[0])
else:
raise ValueError(f'Data type {model_type} is not available')
inputs = {
'imgs': torch.FloatTensor(imgs),
'label': gt_labels,
}
return inputs
def get_cfg(config_type, fname):
"""Grab configs necessary to create a recognizer.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config_types = ('recognition', 'recognition_audio', 'localization',
'detection', 'skeleton')
assert config_type in config_types
repo_dpath = osp.dirname(osp.dirname(osp.dirname(__file__)))
config_dpath = osp.join(repo_dpath, 'configs/' + config_type)
config_fpath = osp.join(config_dpath, fname)
if not osp.exists(config_dpath):
raise Exception('Cannot find config path')
config = mmcv.Config.fromfile(config_fpath)
return config
def get_recognizer_cfg(fname):
return get_cfg('recognition', fname)
def get_audio_recognizer_cfg(fname):
return get_cfg('recognition_audio', fname)
def get_localizer_cfg(fname):
return get_cfg('localization', fname)
def get_detector_cfg(fname):
return get_cfg('detection', fname)
def get_skeletongcn_cfg(fname):
return get_cfg('skeleton', fname)