# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import cv2
import decord
import numpy as np
import torch
import webcolors
from mmcv import Config, DictAction
from mmaction.apis import inference_recognizer, init_recognizer
def parse_args():
parser = argparse.ArgumentParser(description='MMAction2 demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file/url')
parser.add_argument('video', help='video file/url or rawframes directory')
parser.add_argument('label', help='label file')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--use-frames',
default=False,
action='store_true',
help='whether to use rawframes as input')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option')
parser.add_argument(
'--fps',
default=30,
type=int,
help='specify fps value of the output video when using rawframes to '
'generate file')
parser.add_argument(
'--font-scale',
default=0.5,
type=float,
help='font scale of the label in output video')
parser.add_argument(
'--font-color',
default='white',
help='font color of the label in output video')
parser.add_argument(
'--target-resolution',
nargs=2,
default=None,
type=int,
help='Target resolution (w, h) for resizing the frames when using a '
'video as input. If either dimension is set to -1, the frames are '
'resized by keeping the existing aspect ratio')
parser.add_argument(
'--resize-algorithm',
default='bicubic',
help='resize algorithm applied to generate video')
parser.add_argument('--out-filename', default=None, help='output filename')
args = parser.parse_args()
return args
def get_output(video_path,
out_filename,
label,
fps=30,
font_scale=0.5,
font_color='white',
target_resolution=None,
resize_algorithm='bicubic',
use_frames=False):
"""Get demo output using ``moviepy``.
This function will generate video file or gif file from raw video or
frames, by using ``moviepy``. For more information of some parameters,
you can refer to: https://github.com/Zulko/moviepy.
Args:
video_path (str): The video file path or the rawframes directory path.
If ``use_frames`` is set to True, it should be rawframes directory
path. Otherwise, it should be video file path.
out_filename (str): Output filename for the generated file.
label (str): Predicted label of the generated file.
fps (int): Number of picture frames to read per second. Default: 30.
font_scale (float): Font scale of the label. Default: 0.5.
font_color (str): Font color of the label. Default: 'white'.
target_resolution (None | tuple[int | None]): Set to
(desired_width desired_height) to have resized frames. If either
dimension is None, the frames are resized by keeping the existing
aspect ratio. Default: None.
resize_algorithm (str): Support "bicubic", "bilinear", "neighbor",
"lanczos", etc. Default: 'bicubic'. For more information,
see https://ffmpeg.org/ffmpeg-scaler.html
use_frames: Determine Whether to use rawframes as input. Default:False.
"""
if video_path.startswith(('http://', 'https://')):
raise NotImplementedError
try:
from moviepy.editor import ImageSequenceClip
except ImportError:
raise ImportError('Please install moviepy to enable output file.')
# Channel Order is BGR
if use_frames:
frame_list = sorted(
[osp.join(video_path, x) for x in os.listdir(video_path)])
frames = [cv2.imread(x) for x in frame_list]
else:
video = decord.VideoReader(video_path)
frames = [x.asnumpy()[..., ::-1] for x in video]
if target_resolution:
w, h = target_resolution
frame_h, frame_w, _ = frames[0].shape
if w == -1:
w = int(h / frame_h * frame_w)
if h == -1:
h = int(w / frame_w * frame_h)
frames = [cv2.resize(f, (w, h)) for f in frames]
textsize = cv2.getTextSize(label, cv2.FONT_HERSHEY_DUPLEX, font_scale,
1)[0]
textheight = textsize[1]
padding = 10
location = (padding, padding + textheight)
if isinstance(font_color, str):
font_color = webcolors.name_to_rgb(font_color)[::-1]
frames = [np.array(frame) for frame in frames]
for frame in frames:
cv2.putText(frame, label, location, cv2.FONT_HERSHEY_DUPLEX,
font_scale, font_color, 1)
# RGB order
frames = [x[..., ::-1] for x in frames]
video_clips = ImageSequenceClip(frames, fps=fps)
out_type = osp.splitext(out_filename)[1][1:]
if out_type == 'gif':
video_clips.write_gif(out_filename)
else:
video_clips.write_videofile(out_filename, remove_temp=True)
def main():
args = parse_args()
# assign the desired device.
device = torch.device(args.device)
cfg = Config.fromfile(args.config)
cfg.merge_from_dict(args.cfg_options)
# build the recognizer from a config file and checkpoint file/url
model = init_recognizer(cfg, args.checkpoint, device=device)
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
# test a single video or rawframes of a single video
if output_layer_names:
results, returned_feature = inference_recognizer(
model, args.video, outputs=output_layer_names)
else:
results = inference_recognizer(model, args.video)
labels = open(args.label).readlines()
labels = [x.strip() for x in labels]
results = [(labels[k[0]], k[1]) for k in results]
print('The top-5 labels with corresponding scores are:')
for result in results:
print(f'{result[0]}: ', result[1])
if args.out_filename is not None:
if args.target_resolution is not None:
if args.target_resolution[0] == -1:
assert isinstance(args.target_resolution[1], int)
assert args.target_resolution[1] > 0
if args.target_resolution[1] == -1:
assert isinstance(args.target_resolution[0], int)
assert args.target_resolution[0] > 0
args.target_resolution = tuple(args.target_resolution)
get_output(
args.video,
args.out_filename,
results[0][0],
fps=args.fps,
font_scale=args.font_scale,
font_color=args.font_color,
target_resolution=args.target_resolution,
resize_algorithm=args.resize_algorithm,
use_frames=args.use_frames)
if __name__ == '__main__':
main()