samples_per_cls = [
518, 1993, 6260, 508, 208, 3006, 431, 724, 4527, 2131, 199, 1255, 487, 302,
136, 571, 267, 646, 1180, 405, 731, 842, 1619, 271, 1198, 1012, 865, 462,
526, 405, 487, 168, 271, 609, 503, 167, 415, 421, 283, 2069, 715, 196, 989,
122, 599, 396, 245, 380, 236, 260, 325, 133, 206, 191, 394, 145, 277, 268,
172, 146
]
model = dict(
type='SkeletonGCN',
backbone=dict(
type='STGCN',
in_channels=3,
edge_importance_weighting=True,
graph_cfg=dict(layout='ntu-rgb+d', strategy='spatial')),
cls_head=dict(
type='STGCNHead',
num_classes=60,
in_channels=256,
num_person=1,
loss_cls=dict(type='CBFocalLoss', samples_per_cls=samples_per_cls)),
train_cfg=None,
test_cfg=None)
dataset_type = 'PoseDataset'
ann_file_train = 'data/babel/babel60_train.pkl'
ann_file_val = 'data/babel/babel60_val.pkl'
train_pipeline = [
dict(type='PoseDecode'),
dict(type='FormatGCNInput', input_format='NCTVM', num_person=1),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
val_pipeline = [
dict(type='PoseDecode'),
dict(type='FormatGCNInput', input_format='NCTVM', num_person=1),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
test_pipeline = [
dict(type='PoseDecode'),
dict(type='FormatGCNInput', input_format='NCTVM', num_person=1),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
data = dict(
videos_per_gpu=16,
workers_per_gpu=2,
test_dataloader=dict(videos_per_gpu=1),
train=dict(
type='RepeatDataset',
times=5,
dataset=dict(
type=dataset_type,
ann_file=ann_file_train,
data_prefix='',
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix='',
pipeline=val_pipeline),
test=dict(
type=dataset_type,
ann_file=ann_file_val,
data_prefix='',
pipeline=test_pipeline))
# optimizer
optimizer = dict(
type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=[10, 14])
total_epochs = 16
checkpoint_config = dict(interval=1)
evaluation = dict(
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'])
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
# runtime settings
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/stgcn_80e_babel60_wfl/'
load_from = None
resume_from = None
workflow = [('train', 1)]