We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA.
@inproceedings{feichtenhofer2019slowfast,
title={Slowfast networks for video recognition},
author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={6202--6211},
year={2019}
}
config | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | inference_time(video/s) | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|---|
slowonly_r50_4x16x1_256e_kinetics400_rgb | short-side 256 | 8x4 | ResNet50 | None | 72.76 | 90.51 | x | 3168 | ckpt | log | json |
slowonly_r50_video_4x16x1_256e_kinetics400_rgb | short-side 320 | 8x2 | ResNet50 | None | 72.90 | 90.82 | x | 8472 | ckpt | log | json |
slowonly_r50_8x8x1_256e_kinetics400_rgb | short-side 256 | 8x4 | ResNet50 | None | 74.42 | 91.49 | x | 5820 | ckpt | log | json |
slowonly_r50_4x16x1_256e_kinetics400_rgb | short-side 320 | 8x2 | ResNet50 | None | 73.02 | 90.77 | 4.0 (40x3 frames) | 3168 | ckpt | log | json |
slowonly_r50_8x8x1_256e_kinetics400_rgb | short-side 320 | 8x3 | ResNet50 | None | 74.93 | 91.92 | 2.3 (80x3 frames) | 5820 | ckpt | log | json |
slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb | short-side 320 | 8x2 | ResNet50 | ImageNet | 73.39 | 91.12 | x | 3168 | ckpt | log | json |
slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb | short-side 320 | 8x4 | ResNet50 | ImageNet | 75.55 | 92.04 | x | 5820 | ckpt | log | json |
slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb | short-side 320 | 8x2 | ResNet50 | ImageNet | 74.54 | 91.73 | x | 4435 | ckpt | log | json |
slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb | short-side 320 | 8x4 | ResNet50 | ImageNet | 76.07 | 92.42 | x | 8895 | ckpt | log | json |
slowonly_r50_4x16x1_256e_kinetics400_flow | short-side 320 | 8x2 | ResNet50 | ImageNet | 61.79 | 83.62 | x | 8450 | ckpt | log | json |
slowonly_r50_8x8x1_196e_kinetics400_flow | short-side 320 | 8x4 | ResNet50 | ImageNet | 65.76 | 86.25 | x | 8455 | ckpt | log | json |
In data benchmark, we compare two different data preprocessing methods: (1) Resize video to 340x256, (2) Resize the short edge of video to 320px, (3) Resize the short edge of video to 256px.
config | resolution | gpus | backbone | Input | pretrain | top1 acc | top5 acc | testing protocol | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|---|
slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb | 340x256 | 8x2 | ResNet50 | 4x16 | None | 71.61 | 90.05 | 10 clips x 3 crops | ckpt | log | json |
slowonly_r50_randomresizedcrop_320p_4x16x1_256e_kinetics400_rgb | short-side 320 | 8x2 | ResNet50 | 4x16 | None | 73.02 | 90.77 | 10 clips x 3 crops | ckpt | log | json |
slowonly_r50_randomresizedcrop_256p_4x16x1_256e_kinetics400_rgb | short-side 256 | 8x4 | ResNet50 | 4x16 | None | 72.76 | 90.51 | 10 clips x 3 crops | ckpt | log | json |
config | resolution | backbone | pretrain | w. OmniSource | top1 acc | top5 acc | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_r50_4x16x1_256e_kinetics400_rgb | short-side 320 | ResNet50 | None | ❌ | 73.0 | 90.8 | ckpt | log | json |
x | x | ResNet50 | None | ✔️ | 76.8 | 92.5 | ckpt | x | x |
slowonly_r101_8x8x1_196e_kinetics400_rgb | x | ResNet101 | None | ❌ | 76.5 | 92.7 | ckpt | x | x |
x | x | ResNet101 | None | ✔️ | 80.4 | 94.4 | ckpt | x | x |
config | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_r50_video_8x8x1_256e_kinetics600_rgb | short-side 256 | 8x4 | ResNet50 | None | 77.5 | 93.7 | ckpt | log | json |
config | resolution | gpus | backbone | pretrain | top1 acc | top5 acc | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_r50_video_8x8x1_256e_kinetics700_rgb | short-side 256 | 8x4 | ResNet50 | None | 65.0 | 86.1 | ckpt | log | json |
config | resolution | gpus | backbone | pretrain | top1 acc | mean class acc | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb | short-side 256 | 8x2 | ResNet50 | ImageNet | 79.3 | 70.2 | ckpt | log | json |
slowonly_k400_pretrained_r50_4x16x1_120e_gym99_flow | short-side 256 | 8x2 | ResNet50 | Kinetics | 80.3 | 71.0 | ckpt | log | json |
1: 1 Fusion | 83.7 | 74.8 |
config | resolution | gpus | backbone | pretrain | top1 acc | ckpt | log | json |
---|---|---|---|---|---|---|---|---|
slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb | height 100 | 8 | ResNet50 | ImageNet | 97.2 | ckpt | log | json |
config | gpus | backbone | pretrain | top1 acc | top5 acc | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb | 8 | ResNet50 | ImageNet | 37.52 | 71.50 | 5812 | ckpt | log | json |
slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb | 8 | ResNet50 | Kinetics400 | 65.95 | 91.05 | 5812 | ckpt | log | json |
config | gpus | backbone | pretrain | top1 acc | top5 acc | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb | 8 | ResNet50 | ImageNet | 71.35 | 89.35 | 5812 | ckpt | log | json |
slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb | 8 | ResNet50 | Kinetics400 | 92.78 | 99.42 | 5812 | ckpt | log | json |
config | gpus | backbone | pretrain | top1 acc | top5 acc | gpu_mem(M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|
slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb | 8 | ResNet50 | ImageNet | 47.76 | 77.49 | 7759 | ckpt | log | json |
:::{note}
:::
For more details on data preparation, you can refer to corresponding parts in Data Preparation.
You can use the following command to train a model.
python tools/train.py ${CONFIG_FILE} [optional arguments]
Example: train SlowOnly model on Kinetics-400 dataset in a deterministic option with periodic validation.
python tools/train.py configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py \
--work-dir work_dirs/slowonly_r50_4x16x1_256e_kinetics400_rgb \
--validate --seed 0 --deterministic
For more details, you can refer to Training setting part in getting_started.
You can use the following command to test a model.
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
Example: test SlowOnly model on Kinetics-400 dataset and dump the result to a json file.
python tools/test.py configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py \
checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
--out result.json --average-clips=prob
For more details, you can refer to Test a dataset part in getting_started.