@inproceedings{inproceedings,
author = {Carreira, J. and Zisserman, Andrew},
year = {2017},
month = {07},
pages = {4724-4733},
title = {Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset},
doi = {10.1109/CVPR.2017.502}
}
@article{NonLocal2018,
author = {Xiaolong Wang and Ross Girshick and Abhinav Gupta and Kaiming He},
title = {Non-local Neural Networks},
journal = {CVPR},
year = {2018}
}
配置文件 | 分辨率 | GPU 数量 | 主干网络 | 预训练 | top1 准确率 | top5 准确率 | 推理时间 (video/s) | GPU 显存占用 (M) | ckpt | log | json |
---|---|---|---|---|---|---|---|---|---|---|---|
i3d_r50_32x2x1_100e_kinetics400_rgb | 340x256 | 8 | ResNet50 | ImageNet | 72.68 | 90.78 | 1.7 (320x3 frames) | 5170 | ckpt | log | json |
i3d_r50_32x2x1_100e_kinetics400_rgb | 短边 256 | 8 | ResNet50 | ImageNet | 73.27 | 90.92 | x | 5170 | ckpt | log | json |
i3d_r50_video_32x2x1_100e_kinetics400_rgb | 短边 256p | 8 | ResNet50 | ImageNet | 72.85 | 90.75 | x | 5170 | ckpt | log | json |
i3d_r50_dense_32x2x1_100e_kinetics400_rgb | 340x256 | 8x2 | ResNet50 | ImageNet | 72.77 | 90.57 | 1.7 (320x3 frames) | 5170 | ckpt | log | json |
i3d_r50_dense_32x2x1_100e_kinetics400_rgb | 短边 256 | 8 | ResNet50 | ImageNet | 73.48 | 91.00 | x | 5170 | ckpt | log | json |
i3d_r50_lazy_32x2x1_100e_kinetics400_rgb | 340x256 | 8 | ResNet50 | ImageNet | 72.32 | 90.72 | 1.8 (320x3 frames) | 5170 | ckpt | log | json |
i3d_r50_lazy_32x2x1_100e_kinetics400_rgb | 短边 256 | 8 | ResNet50 | ImageNet | 73.24 | 90.99 | x | 5170 | ckpt | log | json |
i3d_nl_embedded_gaussian_r50_32x2x1_100e_kinetics400_rgb | 短边 256p | 8x4 | ResNet50 | ImageNet | 74.71 | 91.81 | x | 6438 | ckpt | log | json |
i3d_nl_gaussian_r50_32x2x1_100e_kinetics400_rgb | 短边 256p | 8x4 | ResNet50 | ImageNet | 73.37 | 91.26 | x | 4944 | ckpt | log | json |
i3d_nl_dot_product_r50_32x2x1_100e_kinetics400_rgb | 短边 256p | 8x4 | ResNet50 | ImageNet | 73.92 | 91.59 | x | 4832 | ckpt | log | json |
注:
对于数据集准备的细节,用户可参考 数据集准备文档 中的 Kinetics400 部分。
用户可以使用以下指令进行模型训练。
python tools/train.py ${CONFIG_FILE} [optional arguments]
例如:以一个确定性的训练方式,辅以定期的验证过程进行 I3D 模型在 Kinetics400 数据集上的训练。
python tools/train.py configs/recognition/i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py \
--work-dir work_dirs/i3d_r50_32x2x1_100e_kinetics400_rgb \
--validate --seed 0 --deterministic
更多训练细节,可参考 基础教程 中的 训练配置 部分。
用户可以使用以下指令进行模型测试。
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
例如:在 Kinetics400 数据集上测试 I3D 模型,并将结果导出为一个 json 文件。
python tools/test.py configs/recognition/i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py \
checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
--out result.json --average-clips prob
更多测试细节,可参考 基础教程 中的 测试某个数据集 部分。