[6d389a]: / configs / recognition / csn / metafile.yml

Download this file

205 lines (204 with data), 8.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
Collections:
- Name: CSN
README: configs/recognition/csn/README.md
Paper:
URL: https://arxiv.org/abs/1904.02811
Title: Video Classification with Channel-Separated Convolutional Networks
Models:
- Config: configs/recognition/csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Batch Size: 3
Epochs: 58
FLOPs: 98096676864
Parameters: 29703568
Pretrained: IG65M
Resolution: short-side 320
Training Data: Kinetics-400
Training Resources: 32 GPUs
Modality: RGB
Name: ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 80.14
Top 5 Accuracy: 94.93
Task: Action Recognition
Training Json Log: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb/20200728_031952.log.json
Training Log: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb/20200728_031952.log
Weights: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb_20200803-fc66ce8d.pth
- Config: configs/recognition/csn/ircsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Batch Size: 3
Epochs: 58
FLOPs: 98096676864
Parameters: 29703568
Pretrained: IG65M
Resolution: short-side 320
Training Data: Kinetics-400
Training Resources: 32 GPUs
Modality: RGB
Name: ircsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 82.76
Top 5 Accuracy: 95.68
Task: Action Recognition
Training Json Log: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb/20200809_053132.log.json
Training Log: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb/20200809_053132.log
Weights: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb/ircsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb_20200812-9037a758.pth
- Config: configs/recognition/csn/ipcsn_bnfrozen_r152_32x2x1_180e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Epochs: 180
FLOPs: 110337228800
Parameters: 33016592
Pretrained: None
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ipcsn_bnfrozen_r152_32x2x1_180e_kinetics400_rgb
Converted From:
Weights: https://www.dropbox.com/s/3fihu6ti60047mu/ipCSN_152_kinetics_from_scratch_f129594342.pkl?dl=0
Code: https://github.com/facebookresearch/VMZ/tree/b61b08194bc3273bef4c45fdfdd36c56c8579ff3
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 77.8
Top 5 Accuracy: 92.8
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/vmz/vmz_ipcsn_from_scratch_r152_32x2x1_180e_kinetics400_rgb_20210617-d565828d.pth
- Config: configs/recognition/csn/ipcsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Epochs: 58
FLOPs: 110337228800
Parameters: 33016592
Pretrained: IG65M
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ipcsn_ig65m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb
Converted From:
Weights: https://www.dropbox.com/s/zpp3p0vn2i7bibl/ipCSN_152_ft_kinetics_from_ig65m_f133090949.pkl?dl=0
Code: https://github.com/facebookresearch/VMZ/tree/b61b08194bc3273bef4c45fdfdd36c56c8579ff3
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 82.5
Top 5 Accuracy: 95.3
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/vmz/vmz_ipcsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb_20210617-c3be9793.pth
- Config: configs/recognition/csn/ipcsn_sports1m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Epochs: 58
FLOPs: 110337228800
Parameters: 33016592
Pretrained: Sports1M
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ipcsn_sports1m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb
Converted From:
Weights: https://www.dropbox.com/s/ir7cr0hda36knux/ipCSN_152_ft_kinetics_from_sports1m_f111279053.pkl?dl=0
Code: https://github.com/facebookresearch/VMZ/tree/b61b08194bc3273bef4c45fdfdd36c56c8579ff3
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 78.8
Top 5 Accuracy: 93.5
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/vmz/vmz_ipcsn_sports1m_pretrained_r152_32x2x1_58e_kinetics400_rgb_20210617-3367437a.pth
- Config: configs/recognition/csn/ircsn_bnfrozen_r152_32x2x1_180e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Epochs: 180
FLOPs: 98096676864
Parameters: 29703568
Pretrained: None
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ircsn_bnfrozen_r152_32x2x1_180e_kinetics400_rgb
Converted From:
Weights: https://www.dropbox.com/s/46gcm7up60ssx5c/irCSN_152_kinetics_from_scratch_f98268019.pkl?dl=0
Code: https://github.com/facebookresearch/VMZ/tree/b61b08194bc3273bef4c45fdfdd36c56c8579ff3
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 76.5
Top 5 Accuracy: 92.1
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/vmz/vmz_ircsn_from_scratch_r152_32x2x1_180e_kinetics400_rgb_20210617-5c933ae1.pth
- Config: configs/recognition/csn/ircsn_ig65m_pretrained_bnfrozen_r50_32x2x1_58e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet50
Epochs: 58
FLOPs: 56209211392
Parameters: 13131152
Pretrained: IG65M
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ircsn_ig65m_pretrained_bnfrozen_r50_32x2x1_58e_kinetics400_rgb
Converted From:
Weights: https://www.dropbox.com/s/gmd8r87l3wmkn3h/irCSN_152_ft_kinetics_from_ig65m_f126851907.pkl?dl=0
Code: https://github.com/facebookresearch/VMZ/tree/b61b08194bc3273bef4c45fdfdd36c56c8579ff3
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 79.0
Top 5 Accuracy: 94.2
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/vmz/vmz_ircsn_ig65m_pretrained_r50_32x2x1_58e_kinetics400_rgb_20210617-86d33018.pth
- Config: configs/recognition/csn/ircsn_sports1m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet152
Epochs: 58
FLOPs: 98096676864
Parameters: 29703568
Pretrained: Sports1M
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ircsn_sports1m_pretrained_bnfrozen_r152_32x2x1_58e_kinetics400_rgb
Converted From:
Weights: https://www.dropbox.com/s/zuoj1aqouh6bo6k/irCSN_152_ft_kinetics_from_sports1m_f101599884.pkl?dl=0
Code: https://github.com/facebookresearch/VMZ/tree/b61b08194bc3273bef4c45fdfdd36c56c8579ff3
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 78.2
Top 5 Accuracy: 93.0
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/vmz/vmz_ircsn_sports1m_pretrained_r152_32x2x1_58e_kinetics400_rgb_20210617-b9b10241.pth
- Config: configs/recognition/csn/ircsn_bnfrozen_r50_32x2x1_180e_kinetics400_rgb.py
In Collection: CSN
Metadata:
Architecture: ResNet50
Epochs: 58
FLOPs: 56209211392
Parameters: 13131152
Pretrained: None
Resolution: short-side 320
Training Data: Kinetics-400
Modality: RGB
Name: ircsn_bnfrozen_r50_32x2x1_180e_kinetics400_rgb
Results:
- Dataset: Kinetics-400
Metrics:
Top 1 Accuracy: 73.6
top5 accuracy: 91.3
Task: Action Recognition
Weights: https://download.openmmlab.com/mmaction/recognition/csn/ircsn_bnfrozen_r50_32x2x1_180e_kinetics400_rgb/ircsn_bnfrozen_r50_32x2x1_180e_kinetics400_rgb_20210618-4e29e2e8.pth