Group convolution has been shown to offer great computational savings in various 2D convolutional architectures for image classification. It is natural to ask: 1) if group convolution can help to alleviate the high computational cost of video classification networks; 2) what factors matter the most in 3D group convolutional networks; and 3) what are good computation/accuracy trade-offs with 3D group convolutional networks. This paper studies the effects of different design choices in 3D group convolutional networks for video classification. We empirically demonstrate that the amount of channel interactions plays an important role in the accuracy of 3D group convolutional networks. Our experiments suggest two main findings. First, it is a good practice to factorize 3D convolutions by separating channel interactions and spatiotemporal interactions as this leads to improved accuracy and lower computational cost. Second, 3D channel-separated convolutions provide a form of regularization, yielding lower training accuracy but higher test accuracy compared to 3D convolutions. These two empirical findings lead us to design an architecture -- Channel-Separated Convolutional Network (CSN) -- which is simple, efficient, yet accurate. On Sports1M, Kinetics, and Something-Something, our CSNs are comparable with or better than the state-of-the-art while being 2-3 times more efficient.
@inproceedings{inproceedings,
author = {Wang, Heng and Feiszli, Matt and Torresani, Lorenzo},
year = {2019},
month = {10},
pages = {5551-5560},
title = {Video Classification With Channel-Separated Convolutional Networks},
doi = {10.1109/ICCV.2019.00565}
}
@inproceedings{ghadiyaram2019large,
title={Large-scale weakly-supervised pre-training for video action recognition},
author={Ghadiyaram, Deepti and Tran, Du and Mahajan, Dhruv},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={12046--12055},
year={2019}
}
:::{note}
:::
For more details on data preparation, you can refer to Kinetics400 in Data Preparation.
You can use the following command to train a model.
python tools/train.py ${CONFIG_FILE} [optional arguments]
Example: train CSN model on Kinetics-400 dataset in a deterministic option with periodic validation.
python tools/train.py configs/recognition/csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py \
--work-dir work_dirs/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb \
--validate --seed 0 --deterministic
For more details, you can refer to Training setting part in getting_started.
You can use the following command to test a model.
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
Example: test CSN model on Kinetics-400 dataset and dump the result to a json file.
python tools/test.py configs/recognition/csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py \
checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
--out result.json --average-clips prob
For more details, you can refer to Test a dataset part in getting_started.