# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.fileio.io import file_handlers
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmcv.runner.fp16_utils import wrap_fp16_model
from mmaction.datasets import build_dataloader, build_dataset
from mmaction.models import build_model
from mmaction.utils import register_module_hooks
# TODO import test functions from mmcv and delete them from mmaction2
try:
from mmcv.engine import multi_gpu_test, single_gpu_test
except (ImportError, ModuleNotFoundError):
warnings.warn(
'DeprecationWarning: single_gpu_test, multi_gpu_test, '
'collect_results_cpu, collect_results_gpu from mmaction2 will be '
'deprecated. Please install mmcv through master branch.')
from mmaction.apis import multi_gpu_test, single_gpu_test
def parse_args():
parser = argparse.ArgumentParser(
description='MMAction2 test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--out',
default=None,
help='output result file in pkl/yaml/json format')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--eval',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g.,'
' "top_k_accuracy", "mean_class_accuracy" for video dataset')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function (deprecate), '
'change to --eval-options instead.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--average-clips',
choices=['score', 'prob', None],
default=None,
help='average type when averaging test clips')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--onnx',
action='store_true',
help='Whether to test with onnx model or not')
parser.add_argument(
'--tensorrt',
action='store_true',
help='Whether to test with TensorRT engine or not')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.eval_options:
raise ValueError(
'--options and --eval-options cannot be both '
'specified, --options is deprecated in favor of --eval-options')
if args.options:
warnings.warn('--options is deprecated in favor of --eval-options')
args.eval_options = args.options
return args
def turn_off_pretrained(cfg):
# recursively find all pretrained in the model config,
# and set them None to avoid redundant pretrain steps for testing
if 'pretrained' in cfg:
cfg.pretrained = None
# recursively turn off pretrained value
for sub_cfg in cfg.values():
if isinstance(sub_cfg, dict):
turn_off_pretrained(sub_cfg)
def inference_pytorch(args, cfg, distributed, data_loader):
"""Get predictions by pytorch models."""
if args.average_clips is not None:
# You can set average_clips during testing, it will override the
# original setting
if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None:
cfg.model.setdefault('test_cfg',
dict(average_clips=args.average_clips))
else:
if cfg.model.get('test_cfg') is not None:
cfg.model.test_cfg.average_clips = args.average_clips
else:
cfg.test_cfg.average_clips = args.average_clips
# remove redundant pretrain steps for testing
turn_off_pretrained(cfg.model)
# build the model and load checkpoint
model = build_model(
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
if len(cfg.module_hooks) > 0:
register_module_hooks(model, cfg.module_hooks)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, args.checkpoint, map_location='cpu')
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect)
return outputs
def inference_tensorrt(ckpt_path, distributed, data_loader, batch_size):
"""Get predictions by TensorRT engine.
For now, multi-gpu mode and dynamic tensor shape are not supported.
"""
assert not distributed, \
'TensorRT engine inference only supports single gpu mode.'
import tensorrt as trt
from mmcv.tensorrt.tensorrt_utils import (torch_dtype_from_trt,
torch_device_from_trt)
# load engine
with trt.Logger() as logger, trt.Runtime(logger) as runtime:
with open(ckpt_path, mode='rb') as f:
engine_bytes = f.read()
engine = runtime.deserialize_cuda_engine(engine_bytes)
# For now, only support fixed input tensor
cur_batch_size = engine.get_binding_shape(0)[0]
assert batch_size == cur_batch_size, \
('Dataset and TensorRT model should share the same batch size, '
f'but get {batch_size} and {cur_batch_size}')
context = engine.create_execution_context()
# get output tensor
dtype = torch_dtype_from_trt(engine.get_binding_dtype(1))
shape = tuple(context.get_binding_shape(1))
device = torch_device_from_trt(engine.get_location(1))
output = torch.empty(
size=shape, dtype=dtype, device=device, requires_grad=False)
# get predictions
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for data in data_loader:
bindings = [
data['imgs'].contiguous().data_ptr(),
output.contiguous().data_ptr()
]
context.execute_async_v2(bindings,
torch.cuda.current_stream().cuda_stream)
results.extend(output.cpu().numpy())
batch_size = len(next(iter(data.values())))
for _ in range(batch_size):
prog_bar.update()
return results
def inference_onnx(ckpt_path, distributed, data_loader, batch_size):
"""Get predictions by ONNX.
For now, multi-gpu mode and dynamic tensor shape are not supported.
"""
assert not distributed, 'ONNX inference only supports single gpu mode.'
import onnx
import onnxruntime as rt
# get input tensor name
onnx_model = onnx.load(ckpt_path)
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert len(net_feed_input) == 1
# For now, only support fixed tensor shape
input_tensor = None
for tensor in onnx_model.graph.input:
if tensor.name == net_feed_input[0]:
input_tensor = tensor
break
cur_batch_size = input_tensor.type.tensor_type.shape.dim[0].dim_value
assert batch_size == cur_batch_size, \
('Dataset and ONNX model should share the same batch size, '
f'but get {batch_size} and {cur_batch_size}')
# get predictions
sess = rt.InferenceSession(ckpt_path)
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for data in data_loader:
imgs = data['imgs'].cpu().numpy()
onnx_result = sess.run(None, {net_feed_input[0]: imgs})[0]
results.extend(onnx_result)
batch_size = len(next(iter(data.values())))
for _ in range(batch_size):
prog_bar.update()
return results
def main():
args = parse_args()
if args.tensorrt and args.onnx:
raise ValueError(
'Cannot set onnx mode and tensorrt mode at the same time.')
cfg = Config.fromfile(args.config)
cfg.merge_from_dict(args.cfg_options)
# Load output_config from cfg
output_config = cfg.get('output_config', {})
if args.out:
# Overwrite output_config from args.out
output_config = Config._merge_a_into_b(
dict(out=args.out), output_config)
# Load eval_config from cfg
eval_config = cfg.get('eval_config', {})
if args.eval:
# Overwrite eval_config from args.eval
eval_config = Config._merge_a_into_b(
dict(metrics=args.eval), eval_config)
if args.eval_options:
# Add options from args.eval_options
eval_config = Config._merge_a_into_b(args.eval_options, eval_config)
assert output_config or eval_config, \
('Please specify at least one operation (save or eval the '
'results) with the argument "--out" or "--eval"')
dataset_type = cfg.data.test.type
if output_config.get('out', None):
if 'output_format' in output_config:
# ugly workround to make recognition and localization the same
warnings.warn(
'Skip checking `output_format` in localization task.')
else:
out = output_config['out']
# make sure the dirname of the output path exists
mmcv.mkdir_or_exist(osp.dirname(out))
_, suffix = osp.splitext(out)
if dataset_type == 'AVADataset':
assert suffix[1:] == 'csv', ('For AVADataset, the format of '
'the output file should be csv')
else:
assert suffix[1:] in file_handlers, (
'The format of the output '
'file should be json, pickle or yaml')
# set cudnn benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# The flag is used to register module's hooks
cfg.setdefault('module_hooks', [])
# build the dataloader
dataset = build_dataset(cfg.data.test, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('test_dataloader', {}))
data_loader = build_dataloader(dataset, **dataloader_setting)
if args.tensorrt:
outputs = inference_tensorrt(args.checkpoint, distributed, data_loader,
dataloader_setting['videos_per_gpu'])
elif args.onnx:
outputs = inference_onnx(args.checkpoint, distributed, data_loader,
dataloader_setting['videos_per_gpu'])
else:
outputs = inference_pytorch(args, cfg, distributed, data_loader)
rank, _ = get_dist_info()
if rank == 0:
if output_config.get('out', None):
out = output_config['out']
print(f'\nwriting results to {out}')
dataset.dump_results(outputs, **output_config)
if eval_config:
eval_res = dataset.evaluate(outputs, **eval_config)
for name, val in eval_res.items():
print(f'{name}: {val:.04f}')
if __name__ == '__main__':
main()