[6d389a]: / tools / test.py

Download this file

366 lines (315 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.fileio.io import file_handlers
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmcv.runner.fp16_utils import wrap_fp16_model
from mmaction.datasets import build_dataloader, build_dataset
from mmaction.models import build_model
from mmaction.utils import register_module_hooks
# TODO import test functions from mmcv and delete them from mmaction2
try:
from mmcv.engine import multi_gpu_test, single_gpu_test
except (ImportError, ModuleNotFoundError):
warnings.warn(
'DeprecationWarning: single_gpu_test, multi_gpu_test, '
'collect_results_cpu, collect_results_gpu from mmaction2 will be '
'deprecated. Please install mmcv through master branch.')
from mmaction.apis import multi_gpu_test, single_gpu_test
def parse_args():
parser = argparse.ArgumentParser(
description='MMAction2 test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--out',
default=None,
help='output result file in pkl/yaml/json format')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--eval',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g.,'
' "top_k_accuracy", "mean_class_accuracy" for video dataset')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function (deprecate), '
'change to --eval-options instead.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--average-clips',
choices=['score', 'prob', None],
default=None,
help='average type when averaging test clips')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--onnx',
action='store_true',
help='Whether to test with onnx model or not')
parser.add_argument(
'--tensorrt',
action='store_true',
help='Whether to test with TensorRT engine or not')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.eval_options:
raise ValueError(
'--options and --eval-options cannot be both '
'specified, --options is deprecated in favor of --eval-options')
if args.options:
warnings.warn('--options is deprecated in favor of --eval-options')
args.eval_options = args.options
return args
def turn_off_pretrained(cfg):
# recursively find all pretrained in the model config,
# and set them None to avoid redundant pretrain steps for testing
if 'pretrained' in cfg:
cfg.pretrained = None
# recursively turn off pretrained value
for sub_cfg in cfg.values():
if isinstance(sub_cfg, dict):
turn_off_pretrained(sub_cfg)
def inference_pytorch(args, cfg, distributed, data_loader):
"""Get predictions by pytorch models."""
if args.average_clips is not None:
# You can set average_clips during testing, it will override the
# original setting
if cfg.model.get('test_cfg') is None and cfg.get('test_cfg') is None:
cfg.model.setdefault('test_cfg',
dict(average_clips=args.average_clips))
else:
if cfg.model.get('test_cfg') is not None:
cfg.model.test_cfg.average_clips = args.average_clips
else:
cfg.test_cfg.average_clips = args.average_clips
# remove redundant pretrain steps for testing
turn_off_pretrained(cfg.model)
# build the model and load checkpoint
model = build_model(
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
if len(cfg.module_hooks) > 0:
register_module_hooks(model, cfg.module_hooks)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, args.checkpoint, map_location='cpu')
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
args.gpu_collect)
return outputs
def inference_tensorrt(ckpt_path, distributed, data_loader, batch_size):
"""Get predictions by TensorRT engine.
For now, multi-gpu mode and dynamic tensor shape are not supported.
"""
assert not distributed, \
'TensorRT engine inference only supports single gpu mode.'
import tensorrt as trt
from mmcv.tensorrt.tensorrt_utils import (torch_dtype_from_trt,
torch_device_from_trt)
# load engine
with trt.Logger() as logger, trt.Runtime(logger) as runtime:
with open(ckpt_path, mode='rb') as f:
engine_bytes = f.read()
engine = runtime.deserialize_cuda_engine(engine_bytes)
# For now, only support fixed input tensor
cur_batch_size = engine.get_binding_shape(0)[0]
assert batch_size == cur_batch_size, \
('Dataset and TensorRT model should share the same batch size, '
f'but get {batch_size} and {cur_batch_size}')
context = engine.create_execution_context()
# get output tensor
dtype = torch_dtype_from_trt(engine.get_binding_dtype(1))
shape = tuple(context.get_binding_shape(1))
device = torch_device_from_trt(engine.get_location(1))
output = torch.empty(
size=shape, dtype=dtype, device=device, requires_grad=False)
# get predictions
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for data in data_loader:
bindings = [
data['imgs'].contiguous().data_ptr(),
output.contiguous().data_ptr()
]
context.execute_async_v2(bindings,
torch.cuda.current_stream().cuda_stream)
results.extend(output.cpu().numpy())
batch_size = len(next(iter(data.values())))
for _ in range(batch_size):
prog_bar.update()
return results
def inference_onnx(ckpt_path, distributed, data_loader, batch_size):
"""Get predictions by ONNX.
For now, multi-gpu mode and dynamic tensor shape are not supported.
"""
assert not distributed, 'ONNX inference only supports single gpu mode.'
import onnx
import onnxruntime as rt
# get input tensor name
onnx_model = onnx.load(ckpt_path)
input_all = [node.name for node in onnx_model.graph.input]
input_initializer = [node.name for node in onnx_model.graph.initializer]
net_feed_input = list(set(input_all) - set(input_initializer))
assert len(net_feed_input) == 1
# For now, only support fixed tensor shape
input_tensor = None
for tensor in onnx_model.graph.input:
if tensor.name == net_feed_input[0]:
input_tensor = tensor
break
cur_batch_size = input_tensor.type.tensor_type.shape.dim[0].dim_value
assert batch_size == cur_batch_size, \
('Dataset and ONNX model should share the same batch size, '
f'but get {batch_size} and {cur_batch_size}')
# get predictions
sess = rt.InferenceSession(ckpt_path)
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for data in data_loader:
imgs = data['imgs'].cpu().numpy()
onnx_result = sess.run(None, {net_feed_input[0]: imgs})[0]
results.extend(onnx_result)
batch_size = len(next(iter(data.values())))
for _ in range(batch_size):
prog_bar.update()
return results
def main():
args = parse_args()
if args.tensorrt and args.onnx:
raise ValueError(
'Cannot set onnx mode and tensorrt mode at the same time.')
cfg = Config.fromfile(args.config)
cfg.merge_from_dict(args.cfg_options)
# Load output_config from cfg
output_config = cfg.get('output_config', {})
if args.out:
# Overwrite output_config from args.out
output_config = Config._merge_a_into_b(
dict(out=args.out), output_config)
# Load eval_config from cfg
eval_config = cfg.get('eval_config', {})
if args.eval:
# Overwrite eval_config from args.eval
eval_config = Config._merge_a_into_b(
dict(metrics=args.eval), eval_config)
if args.eval_options:
# Add options from args.eval_options
eval_config = Config._merge_a_into_b(args.eval_options, eval_config)
assert output_config or eval_config, \
('Please specify at least one operation (save or eval the '
'results) with the argument "--out" or "--eval"')
dataset_type = cfg.data.test.type
if output_config.get('out', None):
if 'output_format' in output_config:
# ugly workround to make recognition and localization the same
warnings.warn(
'Skip checking `output_format` in localization task.')
else:
out = output_config['out']
# make sure the dirname of the output path exists
mmcv.mkdir_or_exist(osp.dirname(out))
_, suffix = osp.splitext(out)
if dataset_type == 'AVADataset':
assert suffix[1:] == 'csv', ('For AVADataset, the format of '
'the output file should be csv')
else:
assert suffix[1:] in file_handlers, (
'The format of the output '
'file should be json, pickle or yaml')
# set cudnn benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# The flag is used to register module's hooks
cfg.setdefault('module_hooks', [])
# build the dataloader
dataset = build_dataset(cfg.data.test, dict(test_mode=True))
dataloader_setting = dict(
videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
dist=distributed,
shuffle=False)
dataloader_setting = dict(dataloader_setting,
**cfg.data.get('test_dataloader', {}))
data_loader = build_dataloader(dataset, **dataloader_setting)
if args.tensorrt:
outputs = inference_tensorrt(args.checkpoint, distributed, data_loader,
dataloader_setting['videos_per_gpu'])
elif args.onnx:
outputs = inference_onnx(args.checkpoint, distributed, data_loader,
dataloader_setting['videos_per_gpu'])
else:
outputs = inference_pytorch(args, cfg, distributed, data_loader)
rank, _ = get_dist_info()
if rank == 0:
if output_config.get('out', None):
out = output_config['out']
print(f'\nwriting results to {out}')
dataset.dump_results(outputs, **output_config)
if eval_config:
eval_res = dataset.evaluate(outputs, **eval_config)
for name, val in eval_res.items():
print(f'{name}: {val:.04f}')
if __name__ == '__main__':
main()