Switch to unified view

a b/tools/data/ucf101/README.md
1
# Preparing UCF-101
2
3
## Introduction
4
5
<!-- [DATASET] -->
6
7
```BibTeX
8
@article{Soomro2012UCF101AD,
9
  title={UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild},
10
  author={K. Soomro and A. Zamir and M. Shah},
11
  journal={ArXiv},
12
  year={2012},
13
  volume={abs/1212.0402}
14
}
15
```
16
17
For basic dataset information, you can refer to the dataset [website](https://www.crcv.ucf.edu/research/data-sets/ucf101/).
18
Before we start, please make sure that the directory is located at `$MMACTION2/tools/data/ucf101/`.
19
20
## Step 1. Prepare Annotations
21
22
First of all, you can run the following script to prepare annotations.
23
24
```shell
25
bash download_annotations.sh
26
```
27
28
## Step 2. Prepare Videos
29
30
Then, you can run the following script to prepare videos.
31
32
```shell
33
bash download_videos.sh
34
```
35
36
For better decoding speed, you can resize the original videos into smaller sized, densely encoded version by:
37
38
```
39
python ../resize_videos.py ../../../data/ucf101/videos/ ../../../data/ucf101/videos_256p_dense_cache --dense --level 2 --ext avi
40
```
41
42
## Step 3. Extract RGB and Flow
43
44
This part is **optional** if you only want to use the video loader.
45
46
Before extracting, please refer to [install.md](/docs/install.md) for installing [denseflow](https://github.com/open-mmlab/denseflow).
47
48
If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance. The extracted frames (RGB + Flow) will take up about 100GB.
49
50
You can run the following script to soft link SSD.
51
52
```shell
53
# execute these two line (Assume the SSD is mounted at "/mnt/SSD/")
54
mkdir /mnt/SSD/ucf101_extracted/
55
ln -s /mnt/SSD/ucf101_extracted/ ../../../data/ucf101/rawframes
56
```
57
58
If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract **RGB-only** frames using denseflow.
59
60
```shell
61
bash extract_rgb_frames.sh
62
```
63
64
If you didn't install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images.
65
66
```shell
67
bash extract_rgb_frames_opencv.sh
68
```
69
70
If both are required, run the following script to extract frames using "tvl1" algorithm.
71
72
```shell
73
bash extract_frames.sh
74
```
75
76
## Step 4. Generate File List
77
78
you can run the follow script to generate file list in the format of rawframes and videos.
79
80
```shell
81
bash generate_videos_filelist.sh
82
bash generate_rawframes_filelist.sh
83
```
84
85
## Step 5. Check Directory Structure
86
87
After the whole data process for UCF-101 preparation,
88
you will get the rawframes (RGB + Flow), videos and annotation files for UCF-101.
89
90
In the context of the whole project (for UCF-101 only), the folder structure will look like:
91
92
```
93
mmaction2
94
├── mmaction
95
├── tools
96
├── configs
97
├── data
98
│   ├── ucf101
99
│   │   ├── ucf101_{train,val}_split_{1,2,3}_rawframes.txt
100
│   │   ├── ucf101_{train,val}_split_{1,2,3}_videos.txt
101
│   │   ├── annotations
102
│   │   ├── videos
103
│   │   │   ├── ApplyEyeMakeup
104
│   │   │   │   ├── v_ApplyEyeMakeup_g01_c01.avi
105
106
│   │   │   ├── YoYo
107
│   │   │   │   ├── v_YoYo_g25_c05.avi
108
│   │   ├── rawframes
109
│   │   │   ├── ApplyEyeMakeup
110
│   │   │   │   ├── v_ApplyEyeMakeup_g01_c01
111
│   │   │   │   │   ├── img_00001.jpg
112
│   │   │   │   │   ├── img_00002.jpg
113
│   │   │   │   │   ├── ...
114
│   │   │   │   │   ├── flow_x_00001.jpg
115
│   │   │   │   │   ├── flow_x_00002.jpg
116
│   │   │   │   │   ├── ...
117
│   │   │   │   │   ├── flow_y_00001.jpg
118
│   │   │   │   │   ├── flow_y_00002.jpg
119
│   │   │   ├── ...
120
│   │   │   ├── YoYo
121
│   │   │   │   ├── v_YoYo_g01_c01
122
│   │   │   │   ├── ...
123
│   │   │   │   ├── v_YoYo_g25_c05
124
125
```
126
127
For training and evaluating on UCF-101, please refer to [getting_started.md](/docs/getting_started.md).