[6d389a]: / tools / data / build_file_list.py

Download this file

269 lines (244 with data), 10.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import json
import os.path as osp
import random
from mmcv.runner import set_random_seed
from tools.data.anno_txt2json import lines2dictlist
from tools.data.parse_file_list import (parse_directory, parse_diving48_splits,
parse_hmdb51_split,
parse_jester_splits,
parse_kinetics_splits,
parse_mit_splits, parse_mmit_splits,
parse_sthv1_splits, parse_sthv2_splits,
parse_ucf101_splits)
def parse_args():
parser = argparse.ArgumentParser(description='Build file list')
parser.add_argument(
'dataset',
type=str,
choices=[
'ucf101', 'kinetics400', 'kinetics600', 'kinetics700', 'thumos14',
'sthv1', 'sthv2', 'mit', 'mmit', 'activitynet', 'hmdb51', 'jester',
'diving48'
],
help='dataset to be built file list')
parser.add_argument(
'src_folder', type=str, help='root directory for the frames or videos')
parser.add_argument(
'--rgb-prefix', type=str, default='img_', help='prefix of rgb frames')
parser.add_argument(
'--flow-x-prefix',
type=str,
default='flow_x_',
help='prefix of flow x frames')
parser.add_argument(
'--flow-y-prefix',
type=str,
default='flow_y_',
help='prefix of flow y frames')
parser.add_argument(
'--num-split',
type=int,
default=3,
help='number of split to file list')
parser.add_argument(
'--subset',
type=str,
default='train',
choices=['train', 'val', 'test'],
help='subset to generate file list')
parser.add_argument(
'--level',
type=int,
default=2,
choices=[1, 2],
help='directory level of data')
parser.add_argument(
'--format',
type=str,
default='rawframes',
choices=['rawframes', 'videos'],
help='data format')
parser.add_argument(
'--out-root-path',
type=str,
default='data/',
help='root path for output')
parser.add_argument(
'--output-format',
type=str,
default='txt',
choices=['txt', 'json'],
help='built file list format')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--shuffle',
action='store_true',
default=False,
help='whether to shuffle the file list')
args = parser.parse_args()
return args
def build_file_list(splits, frame_info, shuffle=False):
"""Build file list for a certain data split.
Args:
splits (tuple): Data split to generate file list.
frame_info (dict): Dict mapping from frames to path. e.g.,
'Skiing/v_Skiing_g18_c02': ('data/ucf101/rawframes/Skiing/v_Skiing_g18_c02', 0, 0). # noqa: E501
shuffle (bool): Whether to shuffle the file list.
Returns:
tuple: RGB file list for training and testing, together with
Flow file list for training and testing.
"""
def build_list(split):
"""Build RGB and Flow file list with a given split.
Args:
split (list): Split to be generate file list.
Returns:
tuple[list, list]: (rgb_list, flow_list), rgb_list is the
generated file list for rgb, flow_list is the generated
file list for flow.
"""
rgb_list, flow_list = list(), list()
for item in split:
if item[0] not in frame_info:
continue
if frame_info[item[0]][1] > 0:
# rawframes
rgb_cnt = frame_info[item[0]][1]
flow_cnt = frame_info[item[0]][2]
if isinstance(item[1], int):
rgb_list.append(f'{item[0]} {rgb_cnt} {item[1]}\n')
flow_list.append(f'{item[0]} {flow_cnt} {item[1]}\n')
elif isinstance(item[1], list):
# only for multi-label datasets like mmit
rgb_list.append(f'{item[0]} {rgb_cnt} ' +
' '.join([str(digit)
for digit in item[1]]) + '\n')
rgb_list.append(f'{item[0]} {flow_cnt} ' +
' '.join([str(digit)
for digit in item[1]]) + '\n')
else:
raise ValueError(
'frame_info should be ' +
'[`video`(str), `label`(int)|`labels(list[int])`')
else:
# videos
if isinstance(item[1], int):
rgb_list.append(f'{frame_info[item[0]][0]} {item[1]}\n')
flow_list.append(f'{frame_info[item[0]][0]} {item[1]}\n')
elif isinstance(item[1], list):
# only for multi-label datasets like mmit
rgb_list.append(f'{frame_info[item[0]][0]} ' +
' '.join([str(digit)
for digit in item[1]]) + '\n')
flow_list.append(
f'{frame_info[item[0]][0]} ' +
' '.join([str(digit) for digit in item[1]]) + '\n')
else:
raise ValueError(
'frame_info should be ' +
'[`video`(str), `label`(int)|`labels(list[int])`')
if shuffle:
random.shuffle(rgb_list)
random.shuffle(flow_list)
return rgb_list, flow_list
train_rgb_list, train_flow_list = build_list(splits[0])
test_rgb_list, test_flow_list = build_list(splits[1])
return (train_rgb_list, test_rgb_list), (train_flow_list, test_flow_list)
def main():
args = parse_args()
if args.seed is not None:
print(f'Set random seed to {args.seed}')
set_random_seed(args.seed)
if args.format == 'rawframes':
frame_info = parse_directory(
args.src_folder,
rgb_prefix=args.rgb_prefix,
flow_x_prefix=args.flow_x_prefix,
flow_y_prefix=args.flow_y_prefix,
level=args.level)
elif args.format == 'videos':
if args.level == 1:
# search for one-level directory
video_list = glob.glob(osp.join(args.src_folder, '*'))
elif args.level == 2:
# search for two-level directory
video_list = glob.glob(osp.join(args.src_folder, '*', '*'))
else:
raise ValueError(f'level must be 1 or 2, but got {args.level}')
frame_info = {}
for video in video_list:
video_path = osp.relpath(video, args.src_folder)
# video_id: (video_relative_path, -1, -1)
frame_info[osp.splitext(video_path)[0]] = (video_path, -1, -1)
else:
raise NotImplementedError('only rawframes and videos are supported')
if args.dataset == 'ucf101':
splits = parse_ucf101_splits(args.level)
elif args.dataset == 'sthv1':
splits = parse_sthv1_splits(args.level)
elif args.dataset == 'sthv2':
splits = parse_sthv2_splits(args.level)
elif args.dataset == 'mit':
splits = parse_mit_splits()
elif args.dataset == 'mmit':
splits = parse_mmit_splits()
elif args.dataset in ['kinetics400', 'kinetics600', 'kinetics700']:
splits = parse_kinetics_splits(args.level, args.dataset)
elif args.dataset == 'hmdb51':
splits = parse_hmdb51_split(args.level)
elif args.dataset == 'jester':
splits = parse_jester_splits(args.level)
elif args.dataset == 'diving48':
splits = parse_diving48_splits()
else:
raise ValueError(
f"Supported datasets are 'ucf101, sthv1, sthv2', 'jester', "
f"'mmit', 'mit', 'kinetics400', 'kinetics600', 'kinetics700', but "
f'got {args.dataset}')
assert len(splits) == args.num_split
out_path = args.out_root_path + args.dataset
if len(splits) > 1:
for i, split in enumerate(splits):
file_lists = build_file_list(
split, frame_info, shuffle=args.shuffle)
train_name = f'{args.dataset}_train_split_{i+1}_{args.format}.txt'
val_name = f'{args.dataset}_val_split_{i+1}_{args.format}.txt'
if args.output_format == 'txt':
with open(osp.join(out_path, train_name), 'w') as f:
f.writelines(file_lists[0][0])
with open(osp.join(out_path, val_name), 'w') as f:
f.writelines(file_lists[0][1])
elif args.output_format == 'json':
train_list = lines2dictlist(file_lists[0][0], args.format)
val_list = lines2dictlist(file_lists[0][1], args.format)
train_name = train_name.replace('.txt', '.json')
val_name = val_name.replace('.txt', '.json')
with open(osp.join(out_path, train_name), 'w') as f:
json.dump(train_list, f)
with open(osp.join(out_path, val_name), 'w') as f:
json.dump(val_list, f)
else:
lists = build_file_list(splits[0], frame_info, shuffle=args.shuffle)
if args.subset == 'train':
ind = 0
elif args.subset == 'val':
ind = 1
elif args.subset == 'test':
ind = 2
else:
raise ValueError(f"subset must be in ['train', 'val', 'test'], "
f'but got {args.subset}.')
filename = f'{args.dataset}_{args.subset}_list_{args.format}.txt'
if args.output_format == 'txt':
with open(osp.join(out_path, filename), 'w') as f:
f.writelines(lists[0][ind])
elif args.output_format == 'json':
data_list = lines2dictlist(lists[0][ind], args.format)
filename = filename.replace('.txt', '.json')
with open(osp.join(out_path, filename), 'w') as f:
json.dump(data_list, f)
if __name__ == '__main__':
main()