--- a +++ b/tools/analysis/report_map.py @@ -0,0 +1,87 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse +import os +import os.path as osp + +import mmcv +import numpy as np + +from mmaction.core import ActivityNetLocalization + +args = None + + +def cuhk17_top1(): + """Assign label for each proposal with the cuhk17 result, which is the #2 + entry in http://activity-net.org/challenges/2017/evaluation.html.""" + if not osp.exists('cuhk_anet17_pred.json'): + os.system('wget https://download.openmmlab.com/' + 'mmaction/localization/cuhk_anet17_pred.json') + proposal = mmcv.load(args.proposal) + results = proposal['results'] + cuhk_pred = mmcv.load('cuhk_anet17_pred.json')['results'] + + def get_topk(preds, k): + preds.sort(key=lambda x: x['score']) + return preds[-k:] + + for k, v in results.items(): + action_pred = cuhk_pred[k] + top1 = get_topk(action_pred, 1) + top1_label = top1[0]['label'] + new_value = [] + for item in v: + x = dict(label=top1_label) + x.update(item) + new_value.append(x) + results[k] = new_value + proposal['results'] = results + mmcv.dump(proposal, args.det_output) + + +cls_funcs = {'cuhk17_top1': cuhk17_top1} + + +def parse_args(): + parser = argparse.ArgumentParser(description='Report detection mAP for' + 'ActivityNet proposal file') + parser.add_argument('--proposal', type=str, help='proposal file') + parser.add_argument( + '--gt', + type=str, + default='data/ActivityNet/' + 'anet_anno_val.json', + help='groundtruth file') + parser.add_argument( + '--cls', + type=str, + default='cuhk17_top1', + choices=['cuhk17_top1'], + help='the way to assign label for each ' + 'proposal') + parser.add_argument( + '--det-output', + type=str, + default='det_result.json', + help='the path to store detection results') + args = parser.parse_args() + return args + + +def main(): + global args, cls_funcs + args = parse_args() + func = cls_funcs[args.cls] + func() + anet_detection = ActivityNetLocalization( + args.gt, + args.det_output, + tiou_thresholds=np.linspace(0.5, 0.95, 10), + verbose=True) + mAP, average_mAP = anet_detection.evaluate() + print('[RESULTS] Performance on ActivityNet detection task.\n' + f'mAP: {mAP}\nAverage-mAP: {average_mAP}') + + +if __name__ == '__main__': + main()