--- a +++ b/tools/analysis/report_accuracy.py @@ -0,0 +1,57 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import argparse + +from mmcv import load +from scipy.special import softmax + +from mmaction.core.evaluation import (get_weighted_score, mean_class_accuracy, + top_k_accuracy) + + +def parse_args(): + parser = argparse.ArgumentParser(description='Fusing multiple scores') + parser.add_argument( + '--scores', + nargs='+', + help='list of scores', + default=['demo/fuse/rgb.pkl', 'demo/fuse/flow.pkl']) + parser.add_argument( + '--coefficients', + nargs='+', + type=float, + help='coefficients of each score file', + default=[1.0, 1.0]) + parser.add_argument( + '--datalist', + help='list of testing data', + default='demo/fuse/data_list.txt') + parser.add_argument('--apply-softmax', action='store_true') + args = parser.parse_args() + return args + + +def main(): + args = parse_args() + assert len(args.scores) == len(args.coefficients) + score_list = args.scores + score_list = [load(f) for f in score_list] + if args.apply_softmax: + + def apply_softmax(scores): + return [softmax(score) for score in scores] + + score_list = [apply_softmax(scores) for scores in score_list] + + weighted_scores = get_weighted_score(score_list, args.coefficients) + data = open(args.datalist).readlines() + labels = [int(x.strip().split()[-1]) for x in data] + + mean_class_acc = mean_class_accuracy(weighted_scores, labels) + top_1_acc, top_5_acc = top_k_accuracy(weighted_scores, labels, (1, 5)) + print(f'Mean Class Accuracy: {mean_class_acc:.04f}') + print(f'Top 1 Accuracy: {top_1_acc:.04f}') + print(f'Top 5 Accuracy: {top_5_acc:.04f}') + + +if __name__ == '__main__': + main()