# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os.path as osp
import shutil
import sys
import tempfile
from unittest.mock import MagicMock, call
import torch
import torch.nn as nn
from mmcv.runner import IterTimerHook, PaviLoggerHook, build_runner
from torch.utils.data import DataLoader
def test_tin_lr_updater_hook():
sys.modules['pavi'] = MagicMock()
loader = DataLoader(torch.ones((10, 2)))
runner = _build_demo_runner()
hook_cfg = dict(type='TINLrUpdaterHook', min_lr=0.1)
runner.register_hook_from_cfg(hook_cfg)
hook_cfg = dict(
type='TINLrUpdaterHook',
by_epoch=False,
min_lr=0.1,
warmup='exp',
warmup_iters=2,
warmup_ratio=0.9)
runner.register_hook_from_cfg(hook_cfg)
runner.register_hook_from_cfg(dict(type='IterTimerHook'))
runner.register_hook(IterTimerHook())
hook_cfg = dict(
type='TINLrUpdaterHook',
by_epoch=False,
min_lr=0.1,
warmup='constant',
warmup_iters=2,
warmup_ratio=0.9)
runner.register_hook_from_cfg(hook_cfg)
runner.register_hook_from_cfg(dict(type='IterTimerHook'))
runner.register_hook(IterTimerHook())
hook_cfg = dict(
type='TINLrUpdaterHook',
by_epoch=False,
min_lr=0.1,
warmup='linear',
warmup_iters=2,
warmup_ratio=0.9)
runner.register_hook_from_cfg(hook_cfg)
runner.register_hook_from_cfg(dict(type='IterTimerHook'))
runner.register_hook(IterTimerHook())
# add pavi hook
hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
runner.register_hook(hook)
runner.run([loader], [('train', 1)])
shutil.rmtree(runner.work_dir)
assert hasattr(hook, 'writer')
calls = [
call('train', {
'learning_rate': 0.028544155877284292,
'momentum': 0.95
}, 1),
call('train', {
'learning_rate': 0.04469266270539641,
'momentum': 0.95
}, 6),
call('train', {
'learning_rate': 0.09695518130045147,
'momentum': 0.95
}, 10)
]
hook.writer.add_scalars.assert_has_calls(calls, any_order=True)
def _build_demo_runner(runner_type='EpochBasedRunner',
max_epochs=1,
max_iters=None):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
def forward(self, x):
return self.linear(x)
def train_step(self, x, optimizer, **kwargs):
return dict(loss=self(x))
def val_step(self, x, optimizer, **kwargs):
return dict(loss=self(x))
model = Model()
optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
log_config = dict(
interval=1, hooks=[
dict(type='TextLoggerHook'),
])
tmp_dir = tempfile.mkdtemp()
tmp_dir = osp.join(tmp_dir, '.test_lr_tmp')
runner = build_runner(
dict(type=runner_type),
default_args=dict(
model=model,
work_dir=tmp_dir,
optimizer=optimizer,
logger=logging.getLogger(),
max_epochs=max_epochs,
max_iters=max_iters))
runner.register_checkpoint_hook(dict(interval=1))
runner.register_logger_hooks(log_config)
return runner