[6d389a]: / tests / test_runtime / test_eval_hook.py

Download this file

348 lines (281 with data), 12.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
import tempfile
import unittest.mock as mock
import warnings
from collections import OrderedDict
from unittest.mock import MagicMock, patch
import pytest
import torch
import torch.nn as nn
from mmcv.runner import EpochBasedRunner, IterBasedRunner
from mmcv.utils import get_logger
from torch.utils.data import DataLoader, Dataset
# TODO import eval hooks from mmcv and delete them from mmaction2
try:
from mmcv.runner import EvalHook, DistEvalHook
pytest.skip(
'EvalHook and DistEvalHook are supported in MMCV',
allow_module_level=True)
except ImportError:
warnings.warn('DeprecationWarning: EvalHook and DistEvalHook from '
'mmaction2 will be deprecated. Please install mmcv through '
'master branch.')
from mmaction.core import DistEvalHook, EvalHook
class ExampleDataset(Dataset):
def __init__(self):
self.index = 0
self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6]
def __getitem__(self, idx):
results = dict(x=torch.tensor([1]))
return results
def __len__(self):
return 1
@mock.create_autospec
def evaluate(self, results, logger=None):
pass
class EvalDataset(ExampleDataset):
def evaluate(self, results, logger=None):
acc = self.eval_result[self.index]
output = OrderedDict(acc=acc, index=self.index, score=acc)
self.index += 1
return output
class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)
@staticmethod
def forward(x, **kwargs):
return x
@staticmethod
def train_step(data_batch, optimizer, **kwargs):
if not isinstance(data_batch, dict):
data_batch = dict(x=data_batch)
return data_batch
def val_step(self, x, optimizer, **kwargs):
return dict(loss=self(x))
def _build_epoch_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = EpochBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
def _build_iter_runner():
model = Model()
tmp_dir = tempfile.mkdtemp()
runner = IterBasedRunner(
model=model, work_dir=tmp_dir, logger=get_logger('demo'))
return runner
def test_eval_hook():
with pytest.raises(AssertionError):
# `save_best` should be a str
test_dataset = Model()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best=True)
with pytest.raises(TypeError):
# dataloader must be a pytorch DataLoader
test_dataset = Model()
data_loader = [DataLoader(test_dataset)]
EvalHook(data_loader)
with pytest.raises(ValueError):
# save_best must be valid when rule_map is None
test_dataset = ExampleDataset()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='unsupport')
with pytest.raises(KeyError):
# rule must be in keys of rule_map
test_dataset = Model()
data_loader = DataLoader(test_dataset)
EvalHook(data_loader, save_best='auto', rule='unsupport')
test_dataset = ExampleDataset()
loader = DataLoader(test_dataset)
model = Model()
data_loader = DataLoader(test_dataset)
eval_hook = EvalHook(data_loader, save_best=None)
with tempfile.TemporaryDirectory() as tmpdir:
# total_epochs = 1
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 1)
test_dataset.evaluate.assert_called_with(
test_dataset, [torch.tensor([1])], logger=runner.logger)
assert runner.meta is None or 'best_score' not in runner.meta[
'hook_msgs']
assert runner.meta is None or 'best_ckpt' not in runner.meta[
'hook_msgs']
# when `save_best` is set to 'auto', first metric will be used.
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='auto')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best acc and corresponding epoch
loader = DataLoader(EvalDataset())
model = Model()
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, interval=1, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best score and corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(
data_loader, interval=1, save_best='score', rule='greater')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
# total_epochs = 8, return the best score using less compare func
# and indicate corresponding epoch
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc', rule='less')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == -3
# Test the EvalHook when resume happened
data_loader = DataLoader(EvalDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
with tempfile.TemporaryDirectory() as tmpdir:
logger = get_logger('test_eval')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.run([loader], [('train', 1)], 2)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 4
resume_from = osp.join(tmpdir, 'latest.pth')
loader = DataLoader(ExampleDataset())
eval_hook = EvalHook(data_loader, save_best='acc')
runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger)
runner.register_checkpoint_hook(dict(interval=1))
runner.register_hook(eval_hook)
runner.resume(resume_from)
runner.run([loader], [('train', 1)], 8)
ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth')
assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path)
assert osp.exists(ckpt_path)
assert runner.meta['hook_msgs']['best_score'] == 7
@patch('mmaction.apis.single_gpu_test', MagicMock)
@patch('mmaction.apis.multi_gpu_test', MagicMock)
@pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook])
@pytest.mark.parametrize('_build_demo_runner,by_epoch',
[(_build_epoch_runner, True),
(_build_iter_runner, False)])
def test_start_param(EvalHookParam, _build_demo_runner, by_epoch):
# create dummy data
dataloader = DataLoader(torch.ones((5, 2)))
# 0.1. dataloader is not a DataLoader object
with pytest.raises(TypeError):
EvalHookParam(dataloader=MagicMock(), interval=-1)
# 0.2. negative interval
with pytest.raises(ValueError):
EvalHookParam(dataloader, interval=-1)
# 1. start=None, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, interval=1, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 2. start=1, interval=1: perform evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=1, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2
# 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, interval=2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 1 # after epoch 2
# 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, interval=2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 1 & 3
# 5. start=0/negative, interval=1: perform evaluation after each epoch and
# before epoch 1.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=0, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2
runner = _build_demo_runner()
with pytest.warns(UserWarning):
evalhook = EvalHookParam(
dataloader, start=-2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
runner.run([dataloader], [('train', 1)], 2)
assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2
# 6. resuming from epoch i, start = x (x<=i), interval =1: perform
# evaluation after each epoch and before the first epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=1, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 2
else:
runner._iter = 2
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # before & after epoch 3
# 7. resuming from epoch i, start = i+1/None, interval =1: perform
# evaluation after each epoch.
runner = _build_demo_runner()
evalhook = EvalHookParam(
dataloader, start=2, by_epoch=by_epoch, save_best=None)
evalhook.evaluate = MagicMock()
runner.register_hook(evalhook)
if by_epoch:
runner._epoch = 1
else:
runner._iter = 1
runner.run([dataloader], [('train', 1)], 3)
assert evalhook.evaluate.call_count == 2 # after epoch 2 & 3
shutil.rmtree(runner.work_dir)