[6d389a]: / mmaction / models / heads / trn_head.py

Download this file

212 lines (180 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import normal_init
from ..builder import HEADS
from .base import BaseHead
class RelationModule(nn.Module):
"""Relation Module of TRN.
Args:
hidden_dim (int): The dimension of hidden layer of MLP in relation
module.
num_segments (int): Number of frame segments.
num_classes (int): Number of classes to be classified.
"""
def __init__(self, hidden_dim, num_segments, num_classes):
super().__init__()
self.hidden_dim = hidden_dim
self.num_segments = num_segments
self.num_classes = num_classes
bottleneck_dim = 512
self.classifier = nn.Sequential(
nn.ReLU(),
nn.Linear(self.num_segments * self.hidden_dim, bottleneck_dim),
nn.ReLU(), nn.Linear(bottleneck_dim, self.num_classes))
def init_weights(self):
# Use the default kaiming_uniform for all nn.linear layers.
pass
def forward(self, x):
# [N, num_segs * hidden_dim]
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
class RelationModuleMultiScale(nn.Module):
"""Relation Module with Multi Scale of TRN.
Args:
hidden_dim (int): The dimension of hidden layer of MLP in relation
module.
num_segments (int): Number of frame segments.
num_classes (int): Number of classes to be classified.
"""
def __init__(self, hidden_dim, num_segments, num_classes):
super().__init__()
self.hidden_dim = hidden_dim
self.num_segments = num_segments
self.num_classes = num_classes
# generate the multiple frame relations
self.scales = range(num_segments, 1, -1)
self.relations_scales = []
self.subsample_scales = []
max_subsample = 3
for scale in self.scales:
# select the different frame features for different scales
relations_scale = list(
itertools.combinations(range(self.num_segments), scale))
self.relations_scales.append(relations_scale)
# sample `max_subsample` relation_scale at most
self.subsample_scales.append(
min(max_subsample, len(relations_scale)))
assert len(self.relations_scales[0]) == 1
bottleneck_dim = 256
self.fc_fusion_scales = nn.ModuleList()
for scale in self.scales:
fc_fusion = nn.Sequential(
nn.ReLU(), nn.Linear(scale * self.hidden_dim, bottleneck_dim),
nn.ReLU(), nn.Linear(bottleneck_dim, self.num_classes))
self.fc_fusion_scales.append(fc_fusion)
def init_weights(self):
# Use the default kaiming_uniform for all nn.linear layers.
pass
def forward(self, x):
# the first one is the largest scale
act_all = x[:, self.relations_scales[0][0], :]
act_all = act_all.view(
act_all.size(0), self.scales[0] * self.hidden_dim)
act_all = self.fc_fusion_scales[0](act_all)
for scaleID in range(1, len(self.scales)):
# iterate over the scales
idx_relations_randomsample = np.random.choice(
len(self.relations_scales[scaleID]),
self.subsample_scales[scaleID],
replace=False)
for idx in idx_relations_randomsample:
act_relation = x[:, self.relations_scales[scaleID][idx], :]
act_relation = act_relation.view(
act_relation.size(0),
self.scales[scaleID] * self.hidden_dim)
act_relation = self.fc_fusion_scales[scaleID](act_relation)
act_all += act_relation
return act_all
@HEADS.register_module()
class TRNHead(BaseHead):
"""Class head for TRN.
Args:
num_classes (int): Number of classes to be classified.
in_channels (int): Number of channels in input feature.
num_segments (int): Number of frame segments. Default: 8.
loss_cls (dict): Config for building loss. Default:
dict(type='CrossEntropyLoss')
spatial_type (str): Pooling type in spatial dimension. Default: 'avg'.
relation_type (str): The relation module type. Choices are 'TRN' or
'TRNMultiScale'. Default: 'TRNMultiScale'.
hidden_dim (int): The dimension of hidden layer of MLP in relation
module. Default: 256.
dropout_ratio (float): Probability of dropout layer. Default: 0.8.
init_std (float): Std value for Initiation. Default: 0.001.
kwargs (dict, optional): Any keyword argument to be used to initialize
the head.
"""
def __init__(self,
num_classes,
in_channels,
num_segments=8,
loss_cls=dict(type='CrossEntropyLoss'),
spatial_type='avg',
relation_type='TRNMultiScale',
hidden_dim=256,
dropout_ratio=0.8,
init_std=0.001,
**kwargs):
super().__init__(num_classes, in_channels, loss_cls, **kwargs)
self.num_classes = num_classes
self.in_channels = in_channels
self.num_segments = num_segments
self.spatial_type = spatial_type
self.relation_type = relation_type
self.hidden_dim = hidden_dim
self.dropout_ratio = dropout_ratio
self.init_std = init_std
if self.relation_type == 'TRN':
self.consensus = RelationModule(self.hidden_dim, self.num_segments,
self.num_classes)
elif self.relation_type == 'TRNMultiScale':
self.consensus = RelationModuleMultiScale(self.hidden_dim,
self.num_segments,
self.num_classes)
else:
raise ValueError(f'Unknown Relation Type {self.relation_type}!')
if self.dropout_ratio != 0:
self.dropout = nn.Dropout(p=self.dropout_ratio)
else:
self.dropout = None
self.fc_cls = nn.Linear(self.in_channels, self.hidden_dim)
if self.spatial_type == 'avg':
# use `nn.AdaptiveAvgPool2d` to adaptively match the in_channels.
self.avg_pool = nn.AdaptiveAvgPool2d(1)
else:
self.avg_pool = None
def init_weights(self):
"""Initiate the parameters from scratch."""
normal_init(self.fc_cls, std=self.init_std)
self.consensus.init_weights()
def forward(self, x, num_segs):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
num_segs (int): Useless in TRNHead. By default, `num_segs`
is equal to `clip_len * num_clips * num_crops`, which is
automatically generated in Recognizer forward phase and
useless in TRN models. The `self.num_segments` we need is a
hyper parameter to build TRN models.
Returns:
torch.Tensor: The classification scores for input samples.
"""
# [N * num_segs, in_channels, 7, 7]
if self.avg_pool is not None:
x = self.avg_pool(x)
# [N * num_segs, in_channels, 1, 1]
x = torch.flatten(x, 1)
# [N * num_segs, in_channels]
if self.dropout is not None:
x = self.dropout(x)
# [N, num_segs, hidden_dim]
cls_score = self.fc_cls(x)
cls_score = cls_score.view((-1, self.num_segments) +
cls_score.size()[1:])
# [N, num_classes]
cls_score = self.consensus(cls_score)
return cls_score