--- a +++ b/mmaction/localization/proposal_utils.py @@ -0,0 +1,95 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import numpy as np + + +def temporal_iou(proposal_min, proposal_max, gt_min, gt_max): + """Compute IoU score between a groundtruth bbox and the proposals. + + Args: + proposal_min (list[float]): List of temporal anchor min. + proposal_max (list[float]): List of temporal anchor max. + gt_min (float): Groundtruth temporal box min. + gt_max (float): Groundtruth temporal box max. + + Returns: + list[float]: List of iou scores. + """ + len_anchors = proposal_max - proposal_min + int_tmin = np.maximum(proposal_min, gt_min) + int_tmax = np.minimum(proposal_max, gt_max) + inter_len = np.maximum(int_tmax - int_tmin, 0.) + union_len = len_anchors - inter_len + gt_max - gt_min + jaccard = np.divide(inter_len, union_len) + return jaccard + + +def temporal_iop(proposal_min, proposal_max, gt_min, gt_max): + """Compute IoP score between a groundtruth bbox and the proposals. + + Compute the IoP which is defined as the overlap ratio with + groundtruth proportional to the duration of this proposal. + + Args: + proposal_min (list[float]): List of temporal anchor min. + proposal_max (list[float]): List of temporal anchor max. + gt_min (float): Groundtruth temporal box min. + gt_max (float): Groundtruth temporal box max. + + Returns: + list[float]: List of intersection over anchor scores. + """ + len_anchors = np.array(proposal_max - proposal_min) + int_tmin = np.maximum(proposal_min, gt_min) + int_tmax = np.minimum(proposal_max, gt_max) + inter_len = np.maximum(int_tmax - int_tmin, 0.) + scores = np.divide(inter_len, len_anchors) + return scores + + +def soft_nms(proposals, alpha, low_threshold, high_threshold, top_k): + """Soft NMS for temporal proposals. + + Args: + proposals (np.ndarray): Proposals generated by network. + alpha (float): Alpha value of Gaussian decaying function. + low_threshold (float): Low threshold for soft nms. + high_threshold (float): High threshold for soft nms. + top_k (int): Top k values to be considered. + + Returns: + np.ndarray: The updated proposals. + """ + proposals = proposals[proposals[:, -1].argsort()[::-1]] + tstart = list(proposals[:, 0]) + tend = list(proposals[:, 1]) + tscore = list(proposals[:, -1]) + rstart = [] + rend = [] + rscore = [] + + while len(tscore) > 0 and len(rscore) <= top_k: + max_index = np.argmax(tscore) + max_width = tend[max_index] - tstart[max_index] + iou_list = temporal_iou(tstart[max_index], tend[max_index], + np.array(tstart), np.array(tend)) + iou_exp_list = np.exp(-np.square(iou_list) / alpha) + + for idx, _ in enumerate(tscore): + if idx != max_index: + current_iou = iou_list[idx] + if current_iou > low_threshold + (high_threshold - + low_threshold) * max_width: + tscore[idx] = tscore[idx] * iou_exp_list[idx] + + rstart.append(tstart[max_index]) + rend.append(tend[max_index]) + rscore.append(tscore[max_index]) + tstart.pop(max_index) + tend.pop(max_index) + tscore.pop(max_index) + + rstart = np.array(rstart).reshape(-1, 1) + rend = np.array(rend).reshape(-1, 1) + rscore = np.array(rscore).reshape(-1, 1) + new_proposals = np.concatenate((rstart, rend, rscore), axis=1) + return new_proposals