[6d389a]: / mmaction / localization / bsn_utils.py

Download this file

269 lines (240 with data), 11.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import numpy as np
from .proposal_utils import temporal_iop, temporal_iou
def generate_candidate_proposals(video_list,
video_infos,
tem_results_dir,
temporal_scale,
peak_threshold,
tem_results_ext='.csv',
result_dict=None):
"""Generate Candidate Proposals with given temporal evaluation results.
Each proposal file will contain:
'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa'.
Args:
video_list (list[int]): List of video indexes to generate proposals.
video_infos (list[dict]): List of video_info dict that contains
'video_name', 'duration_frame', 'duration_second',
'feature_frame', and 'annotations'.
tem_results_dir (str): Directory to load temporal evaluation
results.
temporal_scale (int): The number (scale) on temporal axis.
peak_threshold (float): The threshold for proposal generation.
tem_results_ext (str): File extension for temporal evaluation
model output. Default: '.csv'.
result_dict (dict | None): The dict to save the results. Default: None.
Returns:
dict: A dict contains video_name as keys and proposal list as value.
If result_dict is not None, save the results to it.
"""
if tem_results_ext != '.csv':
raise NotImplementedError('Only support csv format now.')
tscale = temporal_scale
tgap = 1. / tscale
proposal_dict = {}
for video_index in video_list:
video_name = video_infos[video_index]['video_name']
tem_path = osp.join(tem_results_dir, video_name + tem_results_ext)
tem_results = np.loadtxt(
tem_path, dtype=np.float32, delimiter=',', skiprows=1)
start_scores = tem_results[:, 1]
end_scores = tem_results[:, 2]
max_start = max(start_scores)
max_end = max(end_scores)
start_bins = np.zeros(len(start_scores))
start_bins[[0, -1]] = 1
end_bins = np.zeros(len(end_scores))
end_bins[[0, -1]] = 1
for idx in range(1, tscale - 1):
if start_scores[idx] > start_scores[
idx + 1] and start_scores[idx] > start_scores[idx - 1]:
start_bins[idx] = 1
elif start_scores[idx] > (peak_threshold * max_start):
start_bins[idx] = 1
if end_scores[idx] > end_scores[
idx + 1] and end_scores[idx] > end_scores[idx - 1]:
end_bins[idx] = 1
elif end_scores[idx] > (peak_threshold * max_end):
end_bins[idx] = 1
tmin_list = []
tmin_score_list = []
tmax_list = []
tmax_score_list = []
for idx in range(tscale):
if start_bins[idx] == 1:
tmin_list.append(tgap / 2 + tgap * idx)
tmin_score_list.append(start_scores[idx])
if end_bins[idx] == 1:
tmax_list.append(tgap / 2 + tgap * idx)
tmax_score_list.append(end_scores[idx])
new_props = []
for tmax, tmax_score in zip(tmax_list, tmax_score_list):
for tmin, tmin_score in zip(tmin_list, tmin_score_list):
if tmin >= tmax:
break
new_props.append([tmin, tmax, tmin_score, tmax_score])
new_props = np.stack(new_props)
score = (new_props[:, 2] * new_props[:, 3]).reshape(-1, 1)
new_props = np.concatenate((new_props, score), axis=1)
new_props = new_props[new_props[:, -1].argsort()[::-1]]
video_info = video_infos[video_index]
video_frame = video_info['duration_frame']
video_second = video_info['duration_second']
feature_frame = video_info['feature_frame']
corrected_second = float(feature_frame) / video_frame * video_second
gt_tmins = []
gt_tmaxs = []
for annotations in video_info['annotations']:
gt_tmins.append(annotations['segment'][0] / corrected_second)
gt_tmaxs.append(annotations['segment'][1] / corrected_second)
new_iou_list = []
new_ioa_list = []
for new_prop in new_props:
new_iou = max(
temporal_iou(new_prop[0], new_prop[1], gt_tmins, gt_tmaxs))
new_ioa = max(
temporal_iop(new_prop[0], new_prop[1], gt_tmins, gt_tmaxs))
new_iou_list.append(new_iou)
new_ioa_list.append(new_ioa)
new_iou_list = np.array(new_iou_list).reshape(-1, 1)
new_ioa_list = np.array(new_ioa_list).reshape(-1, 1)
new_props = np.concatenate((new_props, new_iou_list), axis=1)
new_props = np.concatenate((new_props, new_ioa_list), axis=1)
proposal_dict[video_name] = new_props
if result_dict is not None:
result_dict[video_name] = new_props
return proposal_dict
def generate_bsp_feature(video_list,
video_infos,
tem_results_dir,
pgm_proposals_dir,
top_k=1000,
bsp_boundary_ratio=0.2,
num_sample_start=8,
num_sample_end=8,
num_sample_action=16,
num_sample_interp=3,
tem_results_ext='.csv',
pgm_proposal_ext='.csv',
result_dict=None):
"""Generate Boundary-Sensitive Proposal Feature with given proposals.
Args:
video_list (list[int]): List of video indexes to generate bsp_feature.
video_infos (list[dict]): List of video_info dict that contains
'video_name'.
tem_results_dir (str): Directory to load temporal evaluation
results.
pgm_proposals_dir (str): Directory to load proposals.
top_k (int): Number of proposals to be considered. Default: 1000
bsp_boundary_ratio (float): Ratio for proposal boundary
(start/end). Default: 0.2.
num_sample_start (int): Num of samples for actionness in
start region. Default: 8.
num_sample_end (int): Num of samples for actionness in end region.
Default: 8.
num_sample_action (int): Num of samples for actionness in center
region. Default: 16.
num_sample_interp (int): Num of samples for interpolation for
each sample point. Default: 3.
tem_results_ext (str): File extension for temporal evaluation
model output. Default: '.csv'.
pgm_proposal_ext (str): File extension for proposals. Default: '.csv'.
result_dict (dict | None): The dict to save the results. Default: None.
Returns:
bsp_feature_dict (dict): A dict contains video_name as keys and
bsp_feature as value. If result_dict is not None, save the
results to it.
"""
if tem_results_ext != '.csv' or pgm_proposal_ext != '.csv':
raise NotImplementedError('Only support csv format now.')
bsp_feature_dict = {}
for video_index in video_list:
video_name = video_infos[video_index]['video_name']
# Load temporal evaluation results
tem_path = osp.join(tem_results_dir, video_name + tem_results_ext)
tem_results = np.loadtxt(
tem_path, dtype=np.float32, delimiter=',', skiprows=1)
score_action = tem_results[:, 0]
seg_tmins = tem_results[:, 3]
seg_tmaxs = tem_results[:, 4]
video_scale = len(tem_results)
video_gap = seg_tmaxs[0] - seg_tmins[0]
video_extend = int(video_scale / 4 + 10)
# Load proposals results
proposal_path = osp.join(pgm_proposals_dir,
video_name + pgm_proposal_ext)
pgm_proposals = np.loadtxt(
proposal_path, dtype=np.float32, delimiter=',', skiprows=1)
pgm_proposals = pgm_proposals[:top_k]
# Generate temporal sample points
boundary_zeros = np.zeros([video_extend])
score_action = np.concatenate(
(boundary_zeros, score_action, boundary_zeros))
begin_tp = []
middle_tp = []
end_tp = []
for i in range(video_extend):
begin_tp.append(-video_gap / 2 -
(video_extend - 1 - i) * video_gap)
end_tp.append(video_gap / 2 + seg_tmaxs[-1] + i * video_gap)
for i in range(video_scale):
middle_tp.append(video_gap / 2 + i * video_gap)
t_points = begin_tp + middle_tp + end_tp
bsp_feature = []
for pgm_proposal in pgm_proposals:
tmin = pgm_proposal[0]
tmax = pgm_proposal[1]
tlen = tmax - tmin
# Temporal range for start
tmin_0 = tmin - tlen * bsp_boundary_ratio
tmin_1 = tmin + tlen * bsp_boundary_ratio
# Temporal range for end
tmax_0 = tmax - tlen * bsp_boundary_ratio
tmax_1 = tmax + tlen * bsp_boundary_ratio
# Generate features at start boundary
tlen_start = (tmin_1 - tmin_0) / (num_sample_start - 1)
tlen_start_sample = tlen_start / num_sample_interp
t_new = [
tmin_0 - tlen_start / 2 + tlen_start_sample * i
for i in range(num_sample_start * num_sample_interp + 1)
]
y_new_start_action = np.interp(t_new, t_points, score_action)
y_new_start = [
np.mean(y_new_start_action[i * num_sample_interp:(i + 1) *
num_sample_interp + 1])
for i in range(num_sample_start)
]
# Generate features at end boundary
tlen_end = (tmax_1 - tmax_0) / (num_sample_end - 1)
tlen_end_sample = tlen_end / num_sample_interp
t_new = [
tmax_0 - tlen_end / 2 + tlen_end_sample * i
for i in range(num_sample_end * num_sample_interp + 1)
]
y_new_end_action = np.interp(t_new, t_points, score_action)
y_new_end = [
np.mean(y_new_end_action[i * num_sample_interp:(i + 1) *
num_sample_interp + 1])
for i in range(num_sample_end)
]
# Generate features for action
tlen_action = (tmax - tmin) / (num_sample_action - 1)
tlen_action_sample = tlen_action / num_sample_interp
t_new = [
tmin - tlen_action / 2 + tlen_action_sample * i
for i in range(num_sample_action * num_sample_interp + 1)
]
y_new_action = np.interp(t_new, t_points, score_action)
y_new_action = [
np.mean(y_new_action[i * num_sample_interp:(i + 1) *
num_sample_interp + 1])
for i in range(num_sample_action)
]
feature = np.concatenate([y_new_action, y_new_start, y_new_end])
bsp_feature.append(feature)
bsp_feature = np.array(bsp_feature)
bsp_feature_dict[video_name] = bsp_feature
if result_dict is not None:
result_dict[video_name] = bsp_feature
return bsp_feature_dict