[6d389a]: / mmaction / datasets / pipelines / loading.py

Download this file

1851 lines (1495 with data), 67.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
# Copyright (c) OpenMMLab. All rights reserved.
import copy as cp
import io
import os
import os.path as osp
import shutil
import warnings
import mmcv
import numpy as np
import torch
from mmcv.fileio import FileClient
from torch.nn.modules.utils import _pair
from ...utils import get_random_string, get_shm_dir, get_thread_id
from ..builder import PIPELINES
@PIPELINES.register_module()
class LoadHVULabel:
"""Convert the HVU label from dictionaries to torch tensors.
Required keys are "label", "categories", "category_nums", added or modified
keys are "label", "mask" and "category_mask".
"""
def __init__(self, **kwargs):
self.hvu_initialized = False
self.kwargs = kwargs
def init_hvu_info(self, categories, category_nums):
assert len(categories) == len(category_nums)
self.categories = categories
self.category_nums = category_nums
self.num_categories = len(self.categories)
self.num_tags = sum(self.category_nums)
self.category2num = dict(zip(categories, category_nums))
self.start_idx = [0]
for i in range(self.num_categories - 1):
self.start_idx.append(self.start_idx[-1] + self.category_nums[i])
self.category2startidx = dict(zip(categories, self.start_idx))
self.hvu_initialized = True
def __call__(self, results):
"""Convert the label dictionary to 3 tensors: "label", "mask" and
"category_mask".
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if not self.hvu_initialized:
self.init_hvu_info(results['categories'], results['category_nums'])
onehot = torch.zeros(self.num_tags)
onehot_mask = torch.zeros(self.num_tags)
category_mask = torch.zeros(self.num_categories)
for category, tags in results['label'].items():
# skip if not training on this category
if category not in self.categories:
continue
category_mask[self.categories.index(category)] = 1.
start_idx = self.category2startidx[category]
category_num = self.category2num[category]
tags = [idx + start_idx for idx in tags]
onehot[tags] = 1.
onehot_mask[start_idx:category_num + start_idx] = 1.
results['label'] = onehot
results['mask'] = onehot_mask
results['category_mask'] = category_mask
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'hvu_initialized={self.hvu_initialized})')
return repr_str
@PIPELINES.register_module()
class SampleFrames:
"""Sample frames from the video.
Required keys are "total_frames", "start_index" , added or modified keys
are "frame_inds", "frame_interval" and "num_clips".
Args:
clip_len (int): Frames of each sampled output clip.
frame_interval (int): Temporal interval of adjacent sampled frames.
Default: 1.
num_clips (int): Number of clips to be sampled. Default: 1.
temporal_jitter (bool): Whether to apply temporal jittering.
Default: False.
twice_sample (bool): Whether to use twice sample when testing.
If set to True, it will sample frames with and without fixed shift,
which is commonly used for testing in TSM model. Default: False.
out_of_bound_opt (str): The way to deal with out of bounds frame
indexes. Available options are 'loop', 'repeat_last'.
Default: 'loop'.
test_mode (bool): Store True when building test or validation dataset.
Default: False.
start_index (None): This argument is deprecated and moved to dataset
class (``BaseDataset``, ``VideoDatset``, ``RawframeDataset``, etc),
see this: https://github.com/open-mmlab/mmaction2/pull/89.
keep_tail_frames (bool): Whether to keep tail frames when sampling.
Default: False.
"""
def __init__(self,
clip_len,
frame_interval=1,
num_clips=1,
temporal_jitter=False,
twice_sample=False,
out_of_bound_opt='loop',
test_mode=False,
start_index=None,
keep_tail_frames=False):
self.clip_len = clip_len
self.frame_interval = frame_interval
self.num_clips = num_clips
self.temporal_jitter = temporal_jitter
self.twice_sample = twice_sample
self.out_of_bound_opt = out_of_bound_opt
self.test_mode = test_mode
self.keep_tail_frames = keep_tail_frames
assert self.out_of_bound_opt in ['loop', 'repeat_last']
if start_index is not None:
warnings.warn('No longer support "start_index" in "SampleFrames", '
'it should be set in dataset class, see this pr: '
'https://github.com/open-mmlab/mmaction2/pull/89')
def _get_train_clips(self, num_frames):
"""Get clip offsets in train mode.
It will calculate the average interval for selected frames,
and randomly shift them within offsets between [0, avg_interval].
If the total number of frames is smaller than clips num or origin
frames length, it will return all zero indices.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
ori_clip_len = self.clip_len * self.frame_interval
if self.keep_tail_frames:
avg_interval = (num_frames - ori_clip_len + 1) / float(
self.num_clips)
if num_frames > ori_clip_len - 1:
base_offsets = np.arange(self.num_clips) * avg_interval
clip_offsets = (base_offsets + np.random.uniform(
0, avg_interval, self.num_clips)).astype(np.int)
else:
clip_offsets = np.zeros((self.num_clips, ), dtype=np.int)
else:
avg_interval = (num_frames - ori_clip_len + 1) // self.num_clips
if avg_interval > 0:
base_offsets = np.arange(self.num_clips) * avg_interval
clip_offsets = base_offsets + np.random.randint(
avg_interval, size=self.num_clips)
elif num_frames > max(self.num_clips, ori_clip_len):
clip_offsets = np.sort(
np.random.randint(
num_frames - ori_clip_len + 1, size=self.num_clips))
elif avg_interval == 0:
ratio = (num_frames - ori_clip_len + 1.0) / self.num_clips
clip_offsets = np.around(np.arange(self.num_clips) * ratio)
else:
clip_offsets = np.zeros((self.num_clips, ), dtype=np.int)
return clip_offsets
def _get_test_clips(self, num_frames):
"""Get clip offsets in test mode.
Calculate the average interval for selected frames, and shift them
fixedly by avg_interval/2. If set twice_sample True, it will sample
frames together without fixed shift. If the total number of frames is
not enough, it will return all zero indices.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in test mode.
"""
ori_clip_len = self.clip_len * self.frame_interval
avg_interval = (num_frames - ori_clip_len + 1) / float(self.num_clips)
if num_frames > ori_clip_len - 1:
base_offsets = np.arange(self.num_clips) * avg_interval
clip_offsets = (base_offsets + avg_interval / 2.0).astype(np.int)
if self.twice_sample:
clip_offsets = np.concatenate([clip_offsets, base_offsets])
else:
clip_offsets = np.zeros((self.num_clips, ), dtype=np.int)
return clip_offsets
def _sample_clips(self, num_frames):
"""Choose clip offsets for the video in a given mode.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices.
"""
if self.test_mode:
clip_offsets = self._get_test_clips(num_frames)
else:
clip_offsets = self._get_train_clips(num_frames)
return clip_offsets
def __call__(self, results):
"""Perform the SampleFrames loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
total_frames = results['total_frames']
clip_offsets = self._sample_clips(total_frames)
frame_inds = clip_offsets[:, None] + np.arange(
self.clip_len)[None, :] * self.frame_interval
frame_inds = np.concatenate(frame_inds)
if self.temporal_jitter:
perframe_offsets = np.random.randint(
self.frame_interval, size=len(frame_inds))
frame_inds += perframe_offsets
frame_inds = frame_inds.reshape((-1, self.clip_len))
if self.out_of_bound_opt == 'loop':
frame_inds = np.mod(frame_inds, total_frames)
elif self.out_of_bound_opt == 'repeat_last':
safe_inds = frame_inds < total_frames
unsafe_inds = 1 - safe_inds
last_ind = np.max(safe_inds * frame_inds, axis=1)
new_inds = (safe_inds * frame_inds + (unsafe_inds.T * last_ind).T)
frame_inds = new_inds
else:
raise ValueError('Illegal out_of_bound option.')
start_index = results['start_index']
frame_inds = np.concatenate(frame_inds) + start_index
results['frame_inds'] = frame_inds.astype(np.int)
results['clip_len'] = self.clip_len
results['frame_interval'] = self.frame_interval
results['num_clips'] = self.num_clips
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'clip_len={self.clip_len}, '
f'frame_interval={self.frame_interval}, '
f'num_clips={self.num_clips}, '
f'temporal_jitter={self.temporal_jitter}, '
f'twice_sample={self.twice_sample}, '
f'out_of_bound_opt={self.out_of_bound_opt}, '
f'test_mode={self.test_mode})')
return repr_str
@PIPELINES.register_module()
class UntrimmedSampleFrames:
"""Sample frames from the untrimmed video.
Required keys are "filename", "total_frames", added or modified keys are
"frame_inds", "frame_interval" and "num_clips".
Args:
clip_len (int): The length of sampled clips. Default: 1.
frame_interval (int): Temporal interval of adjacent sampled frames.
Default: 16.
start_index (None): This argument is deprecated and moved to dataset
class (``BaseDataset``, ``VideoDatset``, ``RawframeDataset``, etc),
see this: https://github.com/open-mmlab/mmaction2/pull/89.
"""
def __init__(self, clip_len=1, frame_interval=16, start_index=None):
self.clip_len = clip_len
self.frame_interval = frame_interval
if start_index is not None:
warnings.warn('No longer support "start_index" in "SampleFrames", '
'it should be set in dataset class, see this pr: '
'https://github.com/open-mmlab/mmaction2/pull/89')
def __call__(self, results):
"""Perform the SampleFrames loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
total_frames = results['total_frames']
start_index = results['start_index']
clip_centers = np.arange(self.frame_interval // 2, total_frames,
self.frame_interval)
num_clips = clip_centers.shape[0]
frame_inds = clip_centers[:, None] + np.arange(
-(self.clip_len // 2), self.clip_len -
(self.clip_len // 2))[None, :]
# clip frame_inds to legal range
frame_inds = np.clip(frame_inds, 0, total_frames - 1)
frame_inds = np.concatenate(frame_inds) + start_index
results['frame_inds'] = frame_inds.astype(np.int)
results['clip_len'] = self.clip_len
results['frame_interval'] = self.frame_interval
results['num_clips'] = num_clips
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'clip_len={self.clip_len}, '
f'frame_interval={self.frame_interval})')
return repr_str
@PIPELINES.register_module()
class DenseSampleFrames(SampleFrames):
"""Select frames from the video by dense sample strategy.
Required keys are "filename", added or modified keys are "total_frames",
"frame_inds", "frame_interval" and "num_clips".
Args:
clip_len (int): Frames of each sampled output clip.
frame_interval (int): Temporal interval of adjacent sampled frames.
Default: 1.
num_clips (int): Number of clips to be sampled. Default: 1.
sample_range (int): Total sample range for dense sample.
Default: 64.
num_sample_positions (int): Number of sample start positions, Which is
only used in test mode. Default: 10. That is to say, by default,
there are at least 10 clips for one input sample in test mode.
temporal_jitter (bool): Whether to apply temporal jittering.
Default: False.
test_mode (bool): Store True when building test or validation dataset.
Default: False.
"""
def __init__(self,
*args,
sample_range=64,
num_sample_positions=10,
**kwargs):
super().__init__(*args, **kwargs)
self.sample_range = sample_range
self.num_sample_positions = num_sample_positions
def _get_train_clips(self, num_frames):
"""Get clip offsets by dense sample strategy in train mode.
It will calculate a sample position and sample interval and set
start index 0 when sample_pos == 1 or randomly choose from
[0, sample_pos - 1]. Then it will shift the start index by each
base offset.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
sample_position = max(1, 1 + num_frames - self.sample_range)
interval = self.sample_range // self.num_clips
start_idx = 0 if sample_position == 1 else np.random.randint(
0, sample_position - 1)
base_offsets = np.arange(self.num_clips) * interval
clip_offsets = (base_offsets + start_idx) % num_frames
return clip_offsets
def _get_test_clips(self, num_frames):
"""Get clip offsets by dense sample strategy in test mode.
It will calculate a sample position and sample interval and evenly
sample several start indexes as start positions between
[0, sample_position-1]. Then it will shift each start index by the
base offsets.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
sample_position = max(1, 1 + num_frames - self.sample_range)
interval = self.sample_range // self.num_clips
start_list = np.linspace(
0, sample_position - 1, num=self.num_sample_positions, dtype=int)
base_offsets = np.arange(self.num_clips) * interval
clip_offsets = list()
for start_idx in start_list:
clip_offsets.extend((base_offsets + start_idx) % num_frames)
clip_offsets = np.array(clip_offsets)
return clip_offsets
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'clip_len={self.clip_len}, '
f'frame_interval={self.frame_interval}, '
f'num_clips={self.num_clips}, '
f'sample_range={self.sample_range}, '
f'num_sample_positions={self.num_sample_positions}, '
f'temporal_jitter={self.temporal_jitter}, '
f'out_of_bound_opt={self.out_of_bound_opt}, '
f'test_mode={self.test_mode})')
return repr_str
@PIPELINES.register_module()
class SampleAVAFrames(SampleFrames):
def __init__(self, clip_len, frame_interval=2, test_mode=False):
super().__init__(clip_len, frame_interval, test_mode=test_mode)
def _get_clips(self, center_index, skip_offsets, shot_info):
start = center_index - (self.clip_len // 2) * self.frame_interval
end = center_index + ((self.clip_len + 1) // 2) * self.frame_interval
frame_inds = list(range(start, end, self.frame_interval))
if not self.test_mode:
frame_inds = frame_inds + skip_offsets
frame_inds = np.clip(frame_inds, shot_info[0], shot_info[1] - 1)
return frame_inds
def __call__(self, results):
fps = results['fps']
timestamp = results['timestamp']
timestamp_start = results['timestamp_start']
shot_info = results['shot_info']
center_index = fps * (timestamp - timestamp_start) + 1
skip_offsets = np.random.randint(
-self.frame_interval // 2, (self.frame_interval + 1) // 2,
size=self.clip_len)
frame_inds = self._get_clips(center_index, skip_offsets, shot_info)
start_index = results.get('start_index', 0)
frame_inds = np.array(frame_inds, dtype=np.int) + start_index
results['frame_inds'] = frame_inds
results['clip_len'] = self.clip_len
results['frame_interval'] = self.frame_interval
results['num_clips'] = 1
results['crop_quadruple'] = np.array([0, 0, 1, 1], dtype=np.float32)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'clip_len={self.clip_len}, '
f'frame_interval={self.frame_interval}, '
f'test_mode={self.test_mode})')
return repr_str
@PIPELINES.register_module()
class SampleProposalFrames(SampleFrames):
"""Sample frames from proposals in the video.
Required keys are "total_frames" and "out_proposals", added or
modified keys are "frame_inds", "frame_interval", "num_clips",
'clip_len' and 'num_proposals'.
Args:
clip_len (int): Frames of each sampled output clip.
body_segments (int): Number of segments in course period.
aug_segments (list[int]): Number of segments in starting and
ending period.
aug_ratio (int | float | tuple[int | float]): The ratio
of the length of augmentation to that of the proposal.
frame_interval (int): Temporal interval of adjacent sampled frames.
Default: 1.
test_interval (int): Temporal interval of adjacent sampled frames
in test mode. Default: 6.
temporal_jitter (bool): Whether to apply temporal jittering.
Default: False.
mode (str): Choose 'train', 'val' or 'test' mode.
Default: 'train'.
"""
def __init__(self,
clip_len,
body_segments,
aug_segments,
aug_ratio,
frame_interval=1,
test_interval=6,
temporal_jitter=False,
mode='train'):
super().__init__(
clip_len,
frame_interval=frame_interval,
temporal_jitter=temporal_jitter)
self.body_segments = body_segments
self.aug_segments = aug_segments
self.aug_ratio = _pair(aug_ratio)
if not mmcv.is_tuple_of(self.aug_ratio, (int, float)):
raise TypeError(f'aug_ratio should be int, float'
f'or tuple of int and float, '
f'but got {type(aug_ratio)}')
assert len(self.aug_ratio) == 2
assert mode in ['train', 'val', 'test']
self.mode = mode
self.test_interval = test_interval
@staticmethod
def _get_train_indices(valid_length, num_segments):
"""Get indices of different stages of proposals in train mode.
It will calculate the average interval for each segment,
and randomly shift them within offsets between [0, average_duration].
If the total number of frames is smaller than num segments, it will
return all zero indices.
Args:
valid_length (int): The length of the starting point's
valid interval.
num_segments (int): Total number of segments.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
avg_interval = (valid_length + 1) // num_segments
if avg_interval > 0:
base_offsets = np.arange(num_segments) * avg_interval
offsets = base_offsets + np.random.randint(
avg_interval, size=num_segments)
else:
offsets = np.zeros((num_segments, ), dtype=np.int)
return offsets
@staticmethod
def _get_val_indices(valid_length, num_segments):
"""Get indices of different stages of proposals in validation mode.
It will calculate the average interval for each segment.
If the total number of valid length is smaller than num segments,
it will return all zero indices.
Args:
valid_length (int): The length of the starting point's
valid interval.
num_segments (int): Total number of segments.
Returns:
np.ndarray: Sampled frame indices in validation mode.
"""
if valid_length >= num_segments:
avg_interval = valid_length / float(num_segments)
base_offsets = np.arange(num_segments) * avg_interval
offsets = (base_offsets + avg_interval / 2.0).astype(np.int)
else:
offsets = np.zeros((num_segments, ), dtype=np.int)
return offsets
def _get_proposal_clips(self, proposal, num_frames):
"""Get clip offsets in train mode.
It will calculate sampled frame indices in the proposal's three
stages: starting, course and ending stage.
Args:
proposal (obj): The proposal object.
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
# proposal interval: [start_frame, end_frame)
start_frame = proposal.start_frame
end_frame = proposal.end_frame
ori_clip_len = self.clip_len * self.frame_interval
duration = end_frame - start_frame
assert duration != 0
valid_length = duration - ori_clip_len
valid_starting = max(0,
start_frame - int(duration * self.aug_ratio[0]))
valid_ending = min(num_frames - ori_clip_len + 1,
end_frame - 1 + int(duration * self.aug_ratio[1]))
valid_starting_length = start_frame - valid_starting - ori_clip_len
valid_ending_length = (valid_ending - end_frame + 1) - ori_clip_len
if self.mode == 'train':
starting_offsets = self._get_train_indices(valid_starting_length,
self.aug_segments[0])
course_offsets = self._get_train_indices(valid_length,
self.body_segments)
ending_offsets = self._get_train_indices(valid_ending_length,
self.aug_segments[1])
elif self.mode == 'val':
starting_offsets = self._get_val_indices(valid_starting_length,
self.aug_segments[0])
course_offsets = self._get_val_indices(valid_length,
self.body_segments)
ending_offsets = self._get_val_indices(valid_ending_length,
self.aug_segments[1])
starting_offsets += valid_starting
course_offsets += start_frame
ending_offsets += end_frame
offsets = np.concatenate(
(starting_offsets, course_offsets, ending_offsets))
return offsets
def _get_train_clips(self, num_frames, proposals):
"""Get clip offsets in train mode.
It will calculate sampled frame indices of each proposal, and then
assemble them.
Args:
num_frames (int): Total number of frame in the video.
proposals (list): Proposals fetched.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
clip_offsets = []
for proposal in proposals:
proposal_clip_offsets = self._get_proposal_clips(
proposal[0][1], num_frames)
clip_offsets = np.concatenate(
[clip_offsets, proposal_clip_offsets])
return clip_offsets
def _get_test_clips(self, num_frames):
"""Get clip offsets in test mode.
It will calculate sampled frame indices based on test interval.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in test mode.
"""
ori_clip_len = self.clip_len * self.frame_interval
return np.arange(
0, num_frames - ori_clip_len, self.test_interval, dtype=np.int)
def _sample_clips(self, num_frames, proposals):
"""Choose clip offsets for the video in a given mode.
Args:
num_frames (int): Total number of frame in the video.
proposals (list | None): Proposals fetched.
It is set to None in test mode.
Returns:
np.ndarray: Sampled frame indices.
"""
if self.mode == 'test':
clip_offsets = self._get_test_clips(num_frames)
else:
assert proposals is not None
clip_offsets = self._get_train_clips(num_frames, proposals)
return clip_offsets
def __call__(self, results):
"""Perform the SampleFrames loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
total_frames = results['total_frames']
out_proposals = results.get('out_proposals', None)
clip_offsets = self._sample_clips(total_frames, out_proposals)
frame_inds = clip_offsets[:, None] + np.arange(
self.clip_len)[None, :] * self.frame_interval
frame_inds = np.concatenate(frame_inds)
if self.temporal_jitter:
perframe_offsets = np.random.randint(
self.frame_interval, size=len(frame_inds))
frame_inds += perframe_offsets
start_index = results['start_index']
frame_inds = np.mod(frame_inds, total_frames) + start_index
results['frame_inds'] = np.array(frame_inds).astype(np.int)
results['clip_len'] = self.clip_len
results['frame_interval'] = self.frame_interval
results['num_clips'] = (
self.body_segments + self.aug_segments[0] + self.aug_segments[1])
if self.mode in ['train', 'val']:
results['num_proposals'] = len(results['out_proposals'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'clip_len={self.clip_len}, '
f'body_segments={self.body_segments}, '
f'aug_segments={self.aug_segments}, '
f'aug_ratio={self.aug_ratio}, '
f'frame_interval={self.frame_interval}, '
f'test_interval={self.test_interval}, '
f'temporal_jitter={self.temporal_jitter}, '
f'mode={self.mode})')
return repr_str
@PIPELINES.register_module()
class PyAVInit:
"""Using pyav to initialize the video.
PyAV: https://github.com/mikeboers/PyAV
Required keys are "filename",
added or modified keys are "video_reader", and "total_frames".
Args:
io_backend (str): io backend where frames are store.
Default: 'disk'.
kwargs (dict): Args for file client.
"""
def __init__(self, io_backend='disk', **kwargs):
self.io_backend = io_backend
self.kwargs = kwargs
self.file_client = None
def __call__(self, results):
"""Perform the PyAV initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
try:
import av
except ImportError:
raise ImportError('Please run "conda install av -c conda-forge" '
'or "pip install av" to install PyAV first.')
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
file_obj = io.BytesIO(self.file_client.get(results['filename']))
container = av.open(file_obj)
results['video_reader'] = container
results['total_frames'] = container.streams.video[0].frames
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}(io_backend={self.io_backend})'
return repr_str
@PIPELINES.register_module()
class PyAVDecode:
"""Using PyAV to decode the video.
PyAV: https://github.com/mikeboers/PyAV
Required keys are "video_reader" and "frame_inds",
added or modified keys are "imgs", "img_shape" and "original_shape".
Args:
multi_thread (bool): If set to True, it will apply multi
thread processing. Default: False.
mode (str): Decoding mode. Options are 'accurate' and 'efficient'.
If set to 'accurate', it will decode videos into accurate frames.
If set to 'efficient', it will adopt fast seeking but only return
the nearest key frames, which may be duplicated and inaccurate,
and more suitable for large scene-based video datasets.
Default: 'accurate'.
"""
def __init__(self, multi_thread=False, mode='accurate'):
self.multi_thread = multi_thread
self.mode = mode
assert mode in ['accurate', 'efficient']
@staticmethod
def frame_generator(container, stream):
"""Frame generator for PyAV."""
for packet in container.demux(stream):
for frame in packet.decode():
if frame:
return frame.to_rgb().to_ndarray()
def __call__(self, results):
"""Perform the PyAV decoding.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
container = results['video_reader']
imgs = list()
if self.multi_thread:
container.streams.video[0].thread_type = 'AUTO'
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
if self.mode == 'accurate':
# set max indice to make early stop
max_inds = max(results['frame_inds'])
i = 0
for frame in container.decode(video=0):
if i > max_inds + 1:
break
imgs.append(frame.to_rgb().to_ndarray())
i += 1
# the available frame in pyav may be less than its length,
# which may raise error
results['imgs'] = [
imgs[i % len(imgs)] for i in results['frame_inds']
]
elif self.mode == 'efficient':
for frame in container.decode(video=0):
backup_frame = frame
break
stream = container.streams.video[0]
for idx in results['frame_inds']:
pts_scale = stream.average_rate * stream.time_base
frame_pts = int(idx / pts_scale)
container.seek(
frame_pts, any_frame=False, backward=True, stream=stream)
frame = self.frame_generator(container, stream)
if frame is not None:
imgs.append(frame)
backup_frame = frame
else:
imgs.append(backup_frame)
results['imgs'] = imgs
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
results['video_reader'] = None
del container
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(multi_thread={self.multi_thread}, mode={self.mode})'
return repr_str
@PIPELINES.register_module()
class PIMSInit:
"""Use PIMS to initialize the video.
PIMS: https://github.com/soft-matter/pims
Args:
io_backend (str): io backend where frames are store.
Default: 'disk'.
mode (str): Decoding mode. Options are 'accurate' and 'efficient'.
If set to 'accurate', it will always use ``pims.PyAVReaderIndexed``
to decode videos into accurate frames. If set to 'efficient', it
will adopt fast seeking by using ``pims.PyAVReaderTimed``.
Both will return the accurate frames in most cases.
Default: 'accurate'.
kwargs (dict): Args for file client.
"""
def __init__(self, io_backend='disk', mode='accurate', **kwargs):
self.io_backend = io_backend
self.kwargs = kwargs
self.file_client = None
self.mode = mode
assert mode in ['accurate', 'efficient']
def __call__(self, results):
try:
import pims
except ImportError:
raise ImportError('Please run "conda install pims -c conda-forge" '
'or "pip install pims" to install pims first.')
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
file_obj = io.BytesIO(self.file_client.get(results['filename']))
if self.mode == 'accurate':
container = pims.PyAVReaderIndexed(file_obj)
else:
container = pims.PyAVReaderTimed(file_obj)
results['video_reader'] = container
results['total_frames'] = len(container)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(io_backend={self.io_backend}, '
f'mode={self.mode})')
return repr_str
@PIPELINES.register_module()
class PIMSDecode:
"""Using PIMS to decode the videos.
PIMS: https://github.com/soft-matter/pims
Required keys are "video_reader" and "frame_inds",
added or modified keys are "imgs", "img_shape" and "original_shape".
"""
def __call__(self, results):
container = results['video_reader']
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
frame_inds = results['frame_inds']
imgs = [container[idx] for idx in frame_inds]
results['video_reader'] = None
del container
results['imgs'] = imgs
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
return results
@PIPELINES.register_module()
class PyAVDecodeMotionVector(PyAVDecode):
"""Using pyav to decode the motion vectors from video.
Reference: https://github.com/PyAV-Org/PyAV/
blob/main/tests/test_decode.py
Required keys are "video_reader" and "frame_inds",
added or modified keys are "motion_vectors", "frame_inds".
"""
@staticmethod
def _parse_vectors(mv, vectors, height, width):
"""Parse the returned vectors."""
(w, h, src_x, src_y, dst_x,
dst_y) = (vectors['w'], vectors['h'], vectors['src_x'],
vectors['src_y'], vectors['dst_x'], vectors['dst_y'])
val_x = dst_x - src_x
val_y = dst_y - src_y
start_x = dst_x - w // 2
start_y = dst_y - h // 2
end_x = start_x + w
end_y = start_y + h
for sx, ex, sy, ey, vx, vy in zip(start_x, end_x, start_y, end_y,
val_x, val_y):
if (sx >= 0 and ex < width and sy >= 0 and ey < height):
mv[sy:ey, sx:ex] = (vx, vy)
return mv
def __call__(self, results):
"""Perform the PyAV motion vector decoding.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
container = results['video_reader']
imgs = list()
if self.multi_thread:
container.streams.video[0].thread_type = 'AUTO'
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
# set max index to make early stop
max_idx = max(results['frame_inds'])
i = 0
stream = container.streams.video[0]
codec_context = stream.codec_context
codec_context.options = {'flags2': '+export_mvs'}
for packet in container.demux(stream):
for frame in packet.decode():
if i > max_idx + 1:
break
i += 1
height = frame.height
width = frame.width
mv = np.zeros((height, width, 2), dtype=np.int8)
vectors = frame.side_data.get('MOTION_VECTORS')
if frame.key_frame:
# Key frame don't have motion vectors
assert vectors is None
if vectors is not None and len(vectors) > 0:
mv = self._parse_vectors(mv, vectors.to_ndarray(), height,
width)
imgs.append(mv)
results['video_reader'] = None
del container
# the available frame in pyav may be less than its length,
# which may raise error
results['motion_vectors'] = np.array(
[imgs[i % len(imgs)] for i in results['frame_inds']])
return results
@PIPELINES.register_module()
class DecordInit:
"""Using decord to initialize the video_reader.
Decord: https://github.com/dmlc/decord
Required keys are "filename",
added or modified keys are "video_reader" and "total_frames".
Args:
io_backend (str): io backend where frames are store.
Default: 'disk'.
num_threads (int): Number of thread to decode the video. Default: 1.
kwargs (dict): Args for file client.
"""
def __init__(self, io_backend='disk', num_threads=1, **kwargs):
self.io_backend = io_backend
self.num_threads = num_threads
self.kwargs = kwargs
self.file_client = None
def __call__(self, results):
"""Perform the Decord initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
try:
import decord
except ImportError:
raise ImportError(
'Please run "pip install decord" to install Decord first.')
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
file_obj = io.BytesIO(self.file_client.get(results['filename']))
container = decord.VideoReader(file_obj, num_threads=self.num_threads)
results['video_reader'] = container
results['total_frames'] = len(container)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'io_backend={self.io_backend}, '
f'num_threads={self.num_threads})')
return repr_str
@PIPELINES.register_module()
class DecordDecode:
"""Using decord to decode the video.
Decord: https://github.com/dmlc/decord
Required keys are "video_reader", "filename" and "frame_inds",
added or modified keys are "imgs" and "original_shape".
Args:
mode (str): Decoding mode. Options are 'accurate' and 'efficient'.
If set to 'accurate', it will decode videos into accurate frames.
If set to 'efficient', it will adopt fast seeking but only return
key frames, which may be duplicated and inaccurate, and more
suitable for large scene-based video datasets. Default: 'accurate'.
"""
def __init__(self, mode='accurate'):
self.mode = mode
assert mode in ['accurate', 'efficient']
def __call__(self, results):
"""Perform the Decord decoding.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
container = results['video_reader']
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
frame_inds = results['frame_inds']
if self.mode == 'accurate':
imgs = container.get_batch(frame_inds).asnumpy()
imgs = list(imgs)
elif self.mode == 'efficient':
# This mode is faster, however it always returns I-FRAME
container.seek(0)
imgs = list()
for idx in frame_inds:
container.seek(idx)
frame = container.next()
imgs.append(frame.asnumpy())
results['video_reader'] = None
del container
results['imgs'] = imgs
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}(mode={self.mode})'
return repr_str
@PIPELINES.register_module()
class OpenCVInit:
"""Using OpenCV to initialize the video_reader.
Required keys are "filename", added or modified keys are "new_path",
"video_reader" and "total_frames".
Args:
io_backend (str): io backend where frames are store.
Default: 'disk'.
kwargs (dict): Args for file client.
"""
def __init__(self, io_backend='disk', **kwargs):
self.io_backend = io_backend
self.kwargs = kwargs
self.file_client = None
self.tmp_folder = None
if self.io_backend != 'disk':
random_string = get_random_string()
thread_id = get_thread_id()
self.tmp_folder = osp.join(get_shm_dir(),
f'{random_string}_{thread_id}')
os.mkdir(self.tmp_folder)
def __call__(self, results):
"""Perform the OpenCV initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if self.io_backend == 'disk':
new_path = results['filename']
else:
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
thread_id = get_thread_id()
# save the file of same thread at the same place
new_path = osp.join(self.tmp_folder, f'tmp_{thread_id}.mp4')
with open(new_path, 'wb') as f:
f.write(self.file_client.get(results['filename']))
container = mmcv.VideoReader(new_path)
results['new_path'] = new_path
results['video_reader'] = container
results['total_frames'] = len(container)
return results
def __del__(self):
if self.tmp_folder and osp.exists(self.tmp_folder):
shutil.rmtree(self.tmp_folder)
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'io_backend={self.io_backend})')
return repr_str
@PIPELINES.register_module()
class OpenCVDecode:
"""Using OpenCV to decode the video.
Required keys are "video_reader", "filename" and "frame_inds", added or
modified keys are "imgs", "img_shape" and "original_shape".
"""
def __call__(self, results):
"""Perform the OpenCV decoding.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
container = results['video_reader']
imgs = list()
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
for frame_ind in results['frame_inds']:
cur_frame = container[frame_ind]
# last frame may be None in OpenCV
while isinstance(cur_frame, type(None)):
frame_ind -= 1
cur_frame = container[frame_ind]
imgs.append(cur_frame)
results['video_reader'] = None
del container
imgs = np.array(imgs)
# The default channel order of OpenCV is BGR, thus we change it to RGB
imgs = imgs[:, :, :, ::-1]
results['imgs'] = list(imgs)
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
return results
@PIPELINES.register_module()
class RawFrameDecode:
"""Load and decode frames with given indices.
Required keys are "frame_dir", "filename_tmpl" and "frame_inds",
added or modified keys are "imgs", "img_shape" and "original_shape".
Args:
io_backend (str): IO backend where frames are stored. Default: 'disk'.
decoding_backend (str): Backend used for image decoding.
Default: 'cv2'.
kwargs (dict, optional): Arguments for FileClient.
"""
def __init__(self, io_backend='disk', decoding_backend='cv2', **kwargs):
self.io_backend = io_backend
self.decoding_backend = decoding_backend
self.kwargs = kwargs
self.file_client = None
def __call__(self, results):
"""Perform the ``RawFrameDecode`` to pick frames given indices.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
mmcv.use_backend(self.decoding_backend)
directory = results['frame_dir']
filename_tmpl = results['filename_tmpl']
modality = results['modality']
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
imgs = list()
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
offset = results.get('offset', 0)
cache = {}
for i, frame_idx in enumerate(results['frame_inds']):
# Avoid loading duplicated frames
if frame_idx in cache:
if modality == 'RGB':
imgs.append(cp.deepcopy(imgs[cache[frame_idx]]))
else:
imgs.append(cp.deepcopy(imgs[2 * cache[frame_idx]]))
imgs.append(cp.deepcopy(imgs[2 * cache[frame_idx] + 1]))
continue
else:
cache[frame_idx] = i
frame_idx += offset
if modality == 'RGB':
filepath = osp.join(directory, filename_tmpl.format(frame_idx))
img_bytes = self.file_client.get(filepath)
# Get frame with channel order RGB directly.
cur_frame = mmcv.imfrombytes(img_bytes, channel_order='rgb')
imgs.append(cur_frame)
elif modality == 'Flow':
x_filepath = osp.join(directory,
filename_tmpl.format('x', frame_idx))
y_filepath = osp.join(directory,
filename_tmpl.format('y', frame_idx))
x_img_bytes = self.file_client.get(x_filepath)
x_frame = mmcv.imfrombytes(x_img_bytes, flag='grayscale')
y_img_bytes = self.file_client.get(y_filepath)
y_frame = mmcv.imfrombytes(y_img_bytes, flag='grayscale')
imgs.extend([x_frame, y_frame])
else:
raise NotImplementedError
results['imgs'] = imgs
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
# we resize the gt_bboxes and proposals to their real scale
if 'gt_bboxes' in results:
h, w = results['img_shape']
scale_factor = np.array([w, h, w, h])
gt_bboxes = results['gt_bboxes']
gt_bboxes = (gt_bboxes * scale_factor).astype(np.float32)
results['gt_bboxes'] = gt_bboxes
if 'proposals' in results and results['proposals'] is not None:
proposals = results['proposals']
proposals = (proposals * scale_factor).astype(np.float32)
results['proposals'] = proposals
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'io_backend={self.io_backend}, '
f'decoding_backend={self.decoding_backend})')
return repr_str
@PIPELINES.register_module()
class ArrayDecode:
"""Load and decode frames with given indices from a 4D array.
Required keys are "array and "frame_inds", added or modified keys are
"imgs", "img_shape" and "original_shape".
"""
def __call__(self, results):
"""Perform the ``RawFrameDecode`` to pick frames given indices.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
modality = results['modality']
array = results['array']
imgs = list()
if results['frame_inds'].ndim != 1:
results['frame_inds'] = np.squeeze(results['frame_inds'])
offset = results.get('offset', 0)
for i, frame_idx in enumerate(results['frame_inds']):
frame_idx += offset
if modality == 'RGB':
imgs.append(array[frame_idx])
elif modality == 'Flow':
imgs.extend(
[array[frame_idx, ..., 0], array[frame_idx, ..., 1]])
else:
raise NotImplementedError
results['imgs'] = imgs
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
return results
def __repr__(self):
return f'{self.__class__.__name__}()'
@PIPELINES.register_module()
class ImageDecode:
"""Load and decode images.
Required key is "filename", added or modified keys are "imgs", "img_shape"
and "original_shape".
Args:
io_backend (str): IO backend where frames are stored. Default: 'disk'.
decoding_backend (str): Backend used for image decoding.
Default: 'cv2'.
kwargs (dict, optional): Arguments for FileClient.
"""
def __init__(self, io_backend='disk', decoding_backend='cv2', **kwargs):
self.io_backend = io_backend
self.decoding_backend = decoding_backend
self.kwargs = kwargs
self.file_client = None
def __call__(self, results):
"""Perform the ``ImageDecode`` to load image given the file path.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
mmcv.use_backend(self.decoding_backend)
filename = results['filename']
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
imgs = list()
img_bytes = self.file_client.get(filename)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
imgs.append(img)
results['imgs'] = imgs
results['original_shape'] = imgs[0].shape[:2]
results['img_shape'] = imgs[0].shape[:2]
return results
@PIPELINES.register_module()
class AudioDecodeInit:
"""Using librosa to initialize the audio reader.
Required keys are "audio_path", added or modified keys are "length",
"sample_rate", "audios".
Args:
io_backend (str): io backend where frames are store.
Default: 'disk'.
sample_rate (int): Audio sampling times per second. Default: 16000.
"""
def __init__(self,
io_backend='disk',
sample_rate=16000,
pad_method='zero',
**kwargs):
self.io_backend = io_backend
self.sample_rate = sample_rate
if pad_method in ['random', 'zero']:
self.pad_method = pad_method
else:
raise NotImplementedError
self.kwargs = kwargs
self.file_client = None
@staticmethod
def _zero_pad(shape):
return np.zeros(shape, dtype=np.float32)
@staticmethod
def _random_pad(shape):
# librosa load raw audio file into a distribution of -1~+1
return np.random.rand(shape).astype(np.float32) * 2 - 1
def __call__(self, results):
"""Perform the librosa initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
try:
import librosa
except ImportError:
raise ImportError('Please install librosa first.')
if self.file_client is None:
self.file_client = FileClient(self.io_backend, **self.kwargs)
if osp.exists(results['audio_path']):
file_obj = io.BytesIO(self.file_client.get(results['audio_path']))
y, sr = librosa.load(file_obj, sr=self.sample_rate)
else:
# Generate a random dummy 10s input
pad_func = getattr(self, f'_{self.pad_method}_pad')
y = pad_func(int(round(10.0 * self.sample_rate)))
sr = self.sample_rate
results['length'] = y.shape[0]
results['sample_rate'] = sr
results['audios'] = y
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'io_backend={self.io_backend}, '
f'sample_rate={self.sample_rate}, '
f'pad_method={self.pad_method})')
return repr_str
@PIPELINES.register_module()
class LoadAudioFeature:
"""Load offline extracted audio features.
Required keys are "audio_path", added or modified keys are "length",
audios".
"""
def __init__(self, pad_method='zero'):
if pad_method not in ['zero', 'random']:
raise NotImplementedError
self.pad_method = pad_method
@staticmethod
def _zero_pad(shape):
return np.zeros(shape, dtype=np.float32)
@staticmethod
def _random_pad(shape):
# spectrogram is normalized into a distribution of 0~1
return np.random.rand(shape).astype(np.float32)
def __call__(self, results):
"""Perform the numpy loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if osp.exists(results['audio_path']):
feature_map = np.load(results['audio_path'])
else:
# Generate a random dummy 10s input
# Some videos do not have audio stream
pad_func = getattr(self, f'_{self.pad_method}_pad')
feature_map = pad_func((640, 80))
results['length'] = feature_map.shape[0]
results['audios'] = feature_map
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'pad_method={self.pad_method})')
return repr_str
@PIPELINES.register_module()
class AudioDecode:
"""Sample the audio w.r.t. the frames selected.
Args:
fixed_length (int): As the audio clip selected by frames sampled may
not be exactly the same, `fixed_length` will truncate or pad them
into the same size. Default: 32000.
Required keys are "frame_inds", "num_clips", "total_frames", "length",
added or modified keys are "audios", "audios_shape".
"""
def __init__(self, fixed_length=32000):
self.fixed_length = fixed_length
def __call__(self, results):
"""Perform the ``AudioDecode`` to pick audio clips."""
audio = results['audios']
frame_inds = results['frame_inds']
num_clips = results['num_clips']
resampled_clips = list()
frame_inds = frame_inds.reshape(num_clips, -1)
for clip_idx in range(num_clips):
clip_frame_inds = frame_inds[clip_idx]
start_idx = max(
0,
int(
round((clip_frame_inds[0] + 1) / results['total_frames'] *
results['length'])))
end_idx = min(
results['length'],
int(
round((clip_frame_inds[-1] + 1) / results['total_frames'] *
results['length'])))
cropped_audio = audio[start_idx:end_idx]
if cropped_audio.shape[0] >= self.fixed_length:
truncated_audio = cropped_audio[:self.fixed_length]
else:
truncated_audio = np.pad(
cropped_audio,
((0, self.fixed_length - cropped_audio.shape[0])),
mode='constant')
resampled_clips.append(truncated_audio)
results['audios'] = np.array(resampled_clips)
results['audios_shape'] = results['audios'].shape
return results
@PIPELINES.register_module()
class BuildPseudoClip:
"""Build pseudo clips with one single image by repeating it n times.
Required key is "imgs", added or modified key is "imgs", "num_clips",
"clip_len".
Args:
clip_len (int): Frames of the generated pseudo clips.
"""
def __init__(self, clip_len):
self.clip_len = clip_len
def __call__(self, results):
# the input should be one single image
assert len(results['imgs']) == 1
im = results['imgs'][0]
for _ in range(1, self.clip_len):
results['imgs'].append(np.copy(im))
results['clip_len'] = self.clip_len
results['num_clips'] = 1
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'fix_length={self.fixed_length})')
return repr_str
@PIPELINES.register_module()
class AudioFeatureSelector:
"""Sample the audio feature w.r.t. the frames selected.
Required keys are "audios", "frame_inds", "num_clips", "length",
"total_frames", added or modified keys are "audios", "audios_shape".
Args:
fixed_length (int): As the features selected by frames sampled may
not be exactly the same, `fixed_length` will truncate or pad them
into the same size. Default: 128.
"""
def __init__(self, fixed_length=128):
self.fixed_length = fixed_length
def __call__(self, results):
"""Perform the ``AudioFeatureSelector`` to pick audio feature clips.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
audio = results['audios']
frame_inds = results['frame_inds']
num_clips = results['num_clips']
resampled_clips = list()
frame_inds = frame_inds.reshape(num_clips, -1)
for clip_idx in range(num_clips):
clip_frame_inds = frame_inds[clip_idx]
start_idx = max(
0,
int(
round((clip_frame_inds[0] + 1) / results['total_frames'] *
results['length'])))
end_idx = min(
results['length'],
int(
round((clip_frame_inds[-1] + 1) / results['total_frames'] *
results['length'])))
cropped_audio = audio[start_idx:end_idx, :]
if cropped_audio.shape[0] >= self.fixed_length:
truncated_audio = cropped_audio[:self.fixed_length, :]
else:
truncated_audio = np.pad(
cropped_audio,
((0, self.fixed_length - cropped_audio.shape[0]), (0, 0)),
mode='constant')
resampled_clips.append(truncated_audio)
results['audios'] = np.array(resampled_clips)
results['audios_shape'] = results['audios'].shape
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'fix_length={self.fixed_length})')
return repr_str
@PIPELINES.register_module()
class LoadLocalizationFeature:
"""Load Video features for localizer with given video_name list.
Required keys are "video_name" and "data_prefix", added or modified keys
are "raw_feature".
Args:
raw_feature_ext (str): Raw feature file extension. Default: '.csv'.
"""
def __init__(self, raw_feature_ext='.csv'):
valid_raw_feature_ext = ('.csv', )
if raw_feature_ext not in valid_raw_feature_ext:
raise NotImplementedError
self.raw_feature_ext = raw_feature_ext
def __call__(self, results):
"""Perform the LoadLocalizationFeature loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
video_name = results['video_name']
data_prefix = results['data_prefix']
data_path = osp.join(data_prefix, video_name + self.raw_feature_ext)
raw_feature = np.loadtxt(
data_path, dtype=np.float32, delimiter=',', skiprows=1)
results['raw_feature'] = np.transpose(raw_feature, (1, 0))
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'raw_feature_ext={self.raw_feature_ext})')
return repr_str
@PIPELINES.register_module()
class GenerateLocalizationLabels:
"""Load video label for localizer with given video_name list.
Required keys are "duration_frame", "duration_second", "feature_frame",
"annotations", added or modified keys are "gt_bbox".
"""
def __call__(self, results):
"""Perform the GenerateLocalizationLabels loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
video_frame = results['duration_frame']
video_second = results['duration_second']
feature_frame = results['feature_frame']
corrected_second = float(feature_frame) / video_frame * video_second
annotations = results['annotations']
gt_bbox = []
for annotation in annotations:
current_start = max(
min(1, annotation['segment'][0] / corrected_second), 0)
current_end = max(
min(1, annotation['segment'][1] / corrected_second), 0)
gt_bbox.append([current_start, current_end])
gt_bbox = np.array(gt_bbox)
results['gt_bbox'] = gt_bbox
return results
@PIPELINES.register_module()
class LoadProposals:
"""Loading proposals with given proposal results.
Required keys are "video_name", added or modified keys are 'bsp_feature',
'tmin', 'tmax', 'tmin_score', 'tmax_score' and 'reference_temporal_iou'.
Args:
top_k (int): The top k proposals to be loaded.
pgm_proposals_dir (str): Directory to load proposals.
pgm_features_dir (str): Directory to load proposal features.
proposal_ext (str): Proposal file extension. Default: '.csv'.
feature_ext (str): Feature file extension. Default: '.npy'.
"""
def __init__(self,
top_k,
pgm_proposals_dir,
pgm_features_dir,
proposal_ext='.csv',
feature_ext='.npy'):
self.top_k = top_k
self.pgm_proposals_dir = pgm_proposals_dir
self.pgm_features_dir = pgm_features_dir
valid_proposal_ext = ('.csv', )
if proposal_ext not in valid_proposal_ext:
raise NotImplementedError
self.proposal_ext = proposal_ext
valid_feature_ext = ('.npy', )
if feature_ext not in valid_feature_ext:
raise NotImplementedError
self.feature_ext = feature_ext
def __call__(self, results):
"""Perform the LoadProposals loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
video_name = results['video_name']
proposal_path = osp.join(self.pgm_proposals_dir,
video_name + self.proposal_ext)
if self.proposal_ext == '.csv':
pgm_proposals = np.loadtxt(
proposal_path, dtype=np.float32, delimiter=',', skiprows=1)
pgm_proposals = np.array(pgm_proposals[:self.top_k])
tmin = pgm_proposals[:, 0]
tmax = pgm_proposals[:, 1]
tmin_score = pgm_proposals[:, 2]
tmax_score = pgm_proposals[:, 3]
reference_temporal_iou = pgm_proposals[:, 5]
feature_path = osp.join(self.pgm_features_dir,
video_name + self.feature_ext)
if self.feature_ext == '.npy':
bsp_feature = np.load(feature_path).astype(np.float32)
bsp_feature = bsp_feature[:self.top_k, :]
results['bsp_feature'] = bsp_feature
results['tmin'] = tmin
results['tmax'] = tmax
results['tmin_score'] = tmin_score
results['tmax_score'] = tmax_score
results['reference_temporal_iou'] = reference_temporal_iou
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'top_k={self.top_k}, '
f'pgm_proposals_dir={self.pgm_proposals_dir}, '
f'pgm_features_dir={self.pgm_features_dir}, '
f'proposal_ext={self.proposal_ext}, '
f'feature_ext={self.feature_ext})')
return repr_str