# Copyright (c) OpenMMLab. All rights reserved.
from collections.abc import Sequence
import mmcv
import numpy as np
import torch
from mmcv.parallel import DataContainer as DC
from ..builder import PIPELINES
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
"""
if isinstance(data, torch.Tensor):
return data
if isinstance(data, np.ndarray):
return torch.from_numpy(data)
if isinstance(data, Sequence) and not mmcv.is_str(data):
return torch.tensor(data)
if isinstance(data, int):
return torch.LongTensor([data])
if isinstance(data, float):
return torch.FloatTensor([data])
raise TypeError(f'type {type(data)} cannot be converted to tensor.')
@PIPELINES.register_module()
class ToTensor:
"""Convert some values in results dict to `torch.Tensor` type in data
loader pipeline.
Args:
keys (Sequence[str]): Required keys to be converted.
"""
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
"""Performs the ToTensor formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
for key in self.keys:
results[key] = to_tensor(results[key])
return results
def __repr__(self):
return f'{self.__class__.__name__}(keys={self.keys})'
@PIPELINES.register_module()
class Rename:
"""Rename the key in results.
Args:
mapping (dict): The keys in results that need to be renamed. The key of
the dict is the original name, while the value is the new name. If
the original name not found in results, do nothing.
Default: dict().
"""
def __init__(self, mapping):
self.mapping = mapping
def __call__(self, results):
for key, value in self.mapping.items():
if key in results:
assert isinstance(key, str) and isinstance(value, str)
assert value not in results, ('the new name already exists in '
'results')
results[value] = results[key]
results.pop(key)
return results
@PIPELINES.register_module()
class ToDataContainer:
"""Convert the data to DataContainer.
Args:
fields (Sequence[dict]): Required fields to be converted
with keys and attributes. E.g.
fields=(dict(key='gt_bbox', stack=False),).
Note that key can also be a list of keys, if so, every tensor in
the list will be converted to DataContainer.
"""
def __init__(self, fields):
self.fields = fields
def __call__(self, results):
"""Performs the ToDataContainer formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
for field in self.fields:
_field = field.copy()
key = _field.pop('key')
if isinstance(key, list):
for item in key:
results[item] = DC(results[item], **_field)
else:
results[key] = DC(results[key], **_field)
return results
def __repr__(self):
return self.__class__.__name__ + f'(fields={self.fields})'
@PIPELINES.register_module()
class ImageToTensor:
"""Convert image type to `torch.Tensor` type.
Args:
keys (Sequence[str]): Required keys to be converted.
"""
def __init__(self, keys):
self.keys = keys
def __call__(self, results):
"""Performs the ImageToTensor formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
for key in self.keys:
results[key] = to_tensor(results[key].transpose(2, 0, 1))
return results
def __repr__(self):
return f'{self.__class__.__name__}(keys={self.keys})'
@PIPELINES.register_module()
class Transpose:
"""Transpose image channels to a given order.
Args:
keys (Sequence[str]): Required keys to be converted.
order (Sequence[int]): Image channel order.
"""
def __init__(self, keys, order):
self.keys = keys
self.order = order
def __call__(self, results):
"""Performs the Transpose formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
for key in self.keys:
results[key] = results[key].transpose(self.order)
return results
def __repr__(self):
return (f'{self.__class__.__name__}('
f'keys={self.keys}, order={self.order})')
@PIPELINES.register_module()
class Collect:
"""Collect data from the loader relevant to the specific task.
This keeps the items in ``keys`` as it is, and collect items in
``meta_keys`` into a meta item called ``meta_name``.This is usually
the last stage of the data loader pipeline.
For example, when keys='imgs', meta_keys=('filename', 'label',
'original_shape'), meta_name='img_metas', the results will be a dict with
keys 'imgs' and 'img_metas', where 'img_metas' is a DataContainer of
another dict with keys 'filename', 'label', 'original_shape'.
Args:
keys (Sequence[str]): Required keys to be collected.
meta_name (str): The name of the key that contains meta information.
This key is always populated. Default: "img_metas".
meta_keys (Sequence[str]): Keys that are collected under meta_name.
The contents of the ``meta_name`` dictionary depends on
``meta_keys``.
By default this includes:
- "filename": path to the image file
- "label": label of the image file
- "original_shape": original shape of the image as a tuple
(h, w, c)
- "img_shape": shape of the image input to the network as a tuple
(h, w, c). Note that images may be zero padded on the
bottom/right, if the batch tensor is larger than this shape.
- "pad_shape": image shape after padding
- "flip_direction": a str in ("horiziontal", "vertival") to
indicate if the image is fliped horizontally or vertically.
- "img_norm_cfg": a dict of normalization information:
- mean - per channel mean subtraction
- std - per channel std divisor
- to_rgb - bool indicating if bgr was converted to rgb
nested (bool): If set as True, will apply data[x] = [data[x]] to all
items in data. The arg is added for compatibility. Default: False.
"""
def __init__(self,
keys,
meta_keys=('filename', 'label', 'original_shape', 'img_shape',
'pad_shape', 'flip_direction', 'img_norm_cfg'),
meta_name='img_metas',
nested=False):
self.keys = keys
self.meta_keys = meta_keys
self.meta_name = meta_name
self.nested = nested
def __call__(self, results):
"""Performs the Collect formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
data = {}
for key in self.keys:
data[key] = results[key]
if len(self.meta_keys) != 0:
meta = {}
for key in self.meta_keys:
meta[key] = results[key]
data[self.meta_name] = DC(meta, cpu_only=True)
if self.nested:
for k in data:
data[k] = [data[k]]
return data
def __repr__(self):
return (f'{self.__class__.__name__}('
f'keys={self.keys}, meta_keys={self.meta_keys}, '
f'nested={self.nested})')
@PIPELINES.register_module()
class FormatShape:
"""Format final imgs shape to the given input_format.
Required keys are "imgs", "num_clips" and "clip_len", added or modified
keys are "imgs" and "input_shape".
Args:
input_format (str): Define the final imgs format.
collapse (bool): To collpase input_format N... to ... (NCTHW to CTHW,
etc.) if N is 1. Should be set as True when training and testing
detectors. Default: False.
"""
def __init__(self, input_format, collapse=False):
self.input_format = input_format
self.collapse = collapse
if self.input_format not in ['NCTHW', 'NCHW', 'NCHW_Flow', 'NPTCHW']:
raise ValueError(
f'The input format {self.input_format} is invalid.')
def __call__(self, results):
"""Performs the FormatShape formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if not isinstance(results['imgs'], np.ndarray):
results['imgs'] = np.array(results['imgs'])
imgs = results['imgs']
# [M x H x W x C]
# M = 1 * N_crops * N_clips * L
if self.collapse:
assert results['num_clips'] == 1
if self.input_format == 'NCTHW':
num_clips = results['num_clips']
clip_len = results['clip_len']
imgs = imgs.reshape((-1, num_clips, clip_len) + imgs.shape[1:])
# N_crops x N_clips x L x H x W x C
imgs = np.transpose(imgs, (0, 1, 5, 2, 3, 4))
# N_crops x N_clips x C x L x H x W
imgs = imgs.reshape((-1, ) + imgs.shape[2:])
# M' x C x L x H x W
# M' = N_crops x N_clips
elif self.input_format == 'NCHW':
imgs = np.transpose(imgs, (0, 3, 1, 2))
# M x C x H x W
elif self.input_format == 'NCHW_Flow':
num_clips = results['num_clips']
clip_len = results['clip_len']
imgs = imgs.reshape((-1, num_clips, clip_len) + imgs.shape[1:])
# N_crops x N_clips x L x H x W x C
imgs = np.transpose(imgs, (0, 1, 2, 5, 3, 4))
# N_crops x N_clips x L x C x H x W
imgs = imgs.reshape((-1, imgs.shape[2] * imgs.shape[3]) +
imgs.shape[4:])
# M' x C' x H x W
# M' = N_crops x N_clips
# C' = L x C
elif self.input_format == 'NPTCHW':
num_proposals = results['num_proposals']
num_clips = results['num_clips']
clip_len = results['clip_len']
imgs = imgs.reshape((num_proposals, num_clips * clip_len) +
imgs.shape[1:])
# P x M x H x W x C
# M = N_clips x L
imgs = np.transpose(imgs, (0, 1, 4, 2, 3))
# P x M x C x H x W
if self.collapse:
assert imgs.shape[0] == 1
imgs = imgs.squeeze(0)
results['imgs'] = imgs
results['input_shape'] = imgs.shape
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(input_format='{self.input_format}')"
return repr_str
@PIPELINES.register_module()
class FormatAudioShape:
"""Format final audio shape to the given input_format.
Required keys are "imgs", "num_clips" and "clip_len", added or modified
keys are "imgs" and "input_shape".
Args:
input_format (str): Define the final imgs format.
"""
def __init__(self, input_format):
self.input_format = input_format
if self.input_format not in ['NCTF']:
raise ValueError(
f'The input format {self.input_format} is invalid.')
def __call__(self, results):
"""Performs the FormatShape formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
audios = results['audios']
# clip x sample x freq -> clip x channel x sample x freq
clip, sample, freq = audios.shape
audios = audios.reshape(clip, 1, sample, freq)
results['audios'] = audios
results['input_shape'] = audios.shape
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(input_format='{self.input_format}')"
return repr_str
@PIPELINES.register_module()
class JointToBone:
"""Convert the joint information to bone information.
Required keys are "keypoint" ,
added or modified keys are "keypoint".
Args:
dataset (str): Define the type of dataset: 'nturgb+d', 'openpose',
'coco'. Default: 'nturgb+d'.
"""
def __init__(self, dataset='nturgb+d'):
self.dataset = dataset
if self.dataset not in ['nturgb+d', 'openpose', 'coco']:
raise ValueError(
f'The dataset type {self.dataset} is not supported')
if self.dataset == 'nturgb+d':
self.pairs = [(0, 1), (1, 20), (2, 20), (3, 2), (4, 20), (5, 4),
(6, 5), (7, 6), (8, 20), (9, 8), (10, 9), (11, 10),
(12, 0), (13, 12), (14, 13), (15, 14), (16, 0),
(17, 16), (18, 17), (19, 18), (21, 22), (20, 20),
(22, 7), (23, 24), (24, 11)]
elif self.dataset == 'openpose':
self.pairs = ((0, 0), (1, 0), (2, 1), (3, 2), (4, 3), (5, 1),
(6, 5), (7, 6), (8, 2), (9, 8), (10, 9), (11, 5),
(12, 11), (13, 12), (14, 0), (15, 0), (16, 14), (17,
15))
elif self.dataset == 'coco':
self.pairs = ((0, 0), (1, 0), (2, 0), (3, 1), (4, 2), (5, 0),
(6, 0), (7, 5), (8, 6), (9, 7), (10, 8), (11, 0),
(12, 0), (13, 11), (14, 12), (15, 13), (16, 14))
def __call__(self, results):
"""Performs the Bone formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
keypoint = results['keypoint']
M, T, V, C = keypoint.shape
bone = np.zeros((M, T, V, C), dtype=np.float32)
assert C in [2, 3]
for v1, v2 in self.pairs:
bone[..., v1, :] = keypoint[..., v1, :] - keypoint[..., v2, :]
if C == 3 and self.dataset in ['openpose', 'coco']:
score = (keypoint[..., v1, 2] + keypoint[..., v2, 2]) / 2
bone[..., v1, 2] = score
results['keypoint'] = bone
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(dataset_type='{self.dataset}')"
return repr_str
@PIPELINES.register_module()
class FormatGCNInput:
"""Format final skeleton shape to the given input_format.
Required keys are "keypoint" and "keypoint_score"(optional),
added or modified keys are "keypoint" and "input_shape".
Args:
input_format (str): Define the final skeleton format.
"""
def __init__(self, input_format, num_person=2):
self.input_format = input_format
if self.input_format not in ['NCTVM']:
raise ValueError(
f'The input format {self.input_format} is invalid.')
self.num_person = num_person
def __call__(self, results):
"""Performs the FormatShape formatting.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
keypoint = results['keypoint']
if 'keypoint_score' in results:
keypoint_confidence = results['keypoint_score']
keypoint_confidence = np.expand_dims(keypoint_confidence, -1)
keypoint_3d = np.concatenate((keypoint, keypoint_confidence),
axis=-1)
else:
keypoint_3d = keypoint
keypoint_3d = np.transpose(keypoint_3d,
(3, 1, 2, 0)) # M T V C -> C T V M
if keypoint_3d.shape[-1] < self.num_person:
pad_dim = self.num_person - keypoint_3d.shape[-1]
pad = np.zeros(
keypoint_3d.shape[:-1] + (pad_dim, ), dtype=keypoint_3d.dtype)
keypoint_3d = np.concatenate((keypoint_3d, pad), axis=-1)
elif keypoint_3d.shape[-1] > self.num_person:
keypoint_3d = keypoint_3d[:, :, :, :self.num_person]
results['keypoint'] = keypoint_3d
results['input_shape'] = keypoint_3d.shape
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f"(input_format='{self.input_format}')"
return repr_str