# Copyright (c) OpenMMLab. All rights reserved.
from collections.abc import Sequence
from mmcv.utils import build_from_cfg
from ..builder import PIPELINES
from .augmentations import PytorchVideoTrans, TorchvisionTrans
@PIPELINES.register_module()
class Compose:
"""Compose a data pipeline with a sequence of transforms.
Args:
transforms (list[dict | callable]):
Either config dicts of transforms or transform objects.
"""
def __init__(self, transforms):
assert isinstance(transforms, Sequence)
self.transforms = []
for transform in transforms:
if isinstance(transform, dict):
if transform['type'].startswith('torchvision.'):
trans_type = transform.pop('type')[12:]
transform = TorchvisionTrans(trans_type, **transform)
elif transform['type'].startswith('pytorchvideo.'):
trans_type = transform.pop('type')[13:]
transform = PytorchVideoTrans(trans_type, **transform)
else:
transform = build_from_cfg(transform, PIPELINES)
self.transforms.append(transform)
elif callable(transform):
self.transforms.append(transform)
else:
raise TypeError(f'transform must be callable or a dict, '
f'but got {type(transform)}')
def __call__(self, data):
"""Call function to apply transforms sequentially.
Args:
data (dict): A result dict contains the data to transform.
Returns:
dict: Transformed data.
"""
#print(data)
for t in self.transforms:
data = t(data)
if data is None:
return None
return data
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string