[6d389a]: / mmaction / datasets / pipelines / augmentations.py

Download this file

1906 lines (1585 with data), 73.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
# Copyright (c) OpenMMLab. All rights reserved.
import random
import warnings
from collections.abc import Sequence
import cv2
import mmcv
import numpy as np
from mmcv.utils import digit_version
from torch.nn.modules.utils import _pair
from ..builder import PIPELINES
from .formatting import to_tensor
def _combine_quadruple(a, b):
return (a[0] + a[2] * b[0], a[1] + a[3] * b[1], a[2] * b[2], a[3] * b[3])
def _flip_quadruple(a):
return (1 - a[0] - a[2], a[1], a[2], a[3])
def _init_lazy_if_proper(results, lazy):
"""Initialize lazy operation properly.
Make sure that a lazy operation is properly initialized,
and avoid a non-lazy operation accidentally getting mixed in.
Required keys in results are "imgs" if "img_shape" not in results,
otherwise, Required keys in results are "img_shape", add or modified keys
are "img_shape", "lazy".
Add or modified keys in "lazy" are "original_shape", "crop_bbox", "flip",
"flip_direction", "interpolation".
Args:
results (dict): A dict stores data pipeline result.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
if 'img_shape' not in results:
results['img_shape'] = results['imgs'][0].shape[:2]
if lazy:
if 'lazy' not in results:
img_h, img_w = results['img_shape']
lazyop = dict()
lazyop['original_shape'] = results['img_shape']
lazyop['crop_bbox'] = np.array([0, 0, img_w, img_h],
dtype=np.float32)
lazyop['flip'] = False
lazyop['flip_direction'] = None
lazyop['interpolation'] = None
results['lazy'] = lazyop
else:
assert 'lazy' not in results, 'Use Fuse after lazy operations'
@PIPELINES.register_module()
class TorchvisionTrans:
"""Torchvision Augmentations, under torchvision.transforms.
Args:
type (str): The name of the torchvision transformation.
"""
def __init__(self, type, **kwargs):
try:
import torchvision
import torchvision.transforms as tv_trans
except ImportError:
raise RuntimeError('Install torchvision to use TorchvisionTrans')
if digit_version(torchvision.__version__) < digit_version('0.8.0'):
raise RuntimeError('The version of torchvision should be at least '
'0.8.0')
trans = getattr(tv_trans, type, None)
assert trans, f'Transform {type} not in torchvision'
self.trans = trans(**kwargs)
def __call__(self, results):
assert 'imgs' in results
imgs = [x.transpose(2, 0, 1) for x in results['imgs']]
imgs = to_tensor(np.stack(imgs))
imgs = self.trans(imgs).data.numpy()
imgs[imgs > 255] = 255
imgs[imgs < 0] = 0
imgs = imgs.astype(np.uint8)
imgs = [x.transpose(1, 2, 0) for x in imgs]
results['imgs'] = imgs
return results
@PIPELINES.register_module()
class PytorchVideoTrans:
"""PytorchVideoTrans Augmentations, under pytorchvideo.transforms.
Args:
type (str): The name of the pytorchvideo transformation.
"""
def __init__(self, type, **kwargs):
try:
import torch
import pytorchvideo.transforms as ptv_trans
except ImportError:
raise RuntimeError('Install pytorchvideo to use PytorchVideoTrans')
if digit_version(torch.__version__) < digit_version('1.8.0'):
raise RuntimeError(
'The version of PyTorch should be at least 1.8.0')
trans = getattr(ptv_trans, type, None)
assert trans, f'Transform {type} not in pytorchvideo'
supported_pytorchvideo_trans = ('AugMix', 'RandAugment',
'RandomResizedCrop', 'ShortSideScale',
'RandomShortSideScale')
assert type in supported_pytorchvideo_trans,\
f'PytorchVideo Transform {type} is not supported in MMAction2'
self.trans = trans(**kwargs)
self.type = type
def __call__(self, results):
assert 'imgs' in results
assert 'gt_bboxes' not in results,\
f'PytorchVideo {self.type} doesn\'t support bboxes yet.'
assert 'proposals' not in results,\
f'PytorchVideo {self.type} doesn\'t support bboxes yet.'
if self.type in ('AugMix', 'RandAugment'):
# list[ndarray(h, w, 3)] -> torch.tensor(t, c, h, w)
imgs = [x.transpose(2, 0, 1) for x in results['imgs']]
imgs = to_tensor(np.stack(imgs))
else:
# list[ndarray(h, w, 3)] -> torch.tensor(c, t, h, w)
# uint8 -> float32
imgs = to_tensor((np.stack(results['imgs']).transpose(3, 0, 1, 2) /
255.).astype(np.float32))
imgs = self.trans(imgs).data.numpy()
if self.type in ('AugMix', 'RandAugment'):
imgs[imgs > 255] = 255
imgs[imgs < 0] = 0
imgs = imgs.astype(np.uint8)
# torch.tensor(t, c, h, w) -> list[ndarray(h, w, 3)]
imgs = [x.transpose(1, 2, 0) for x in imgs]
else:
# float32 -> uint8
imgs = imgs * 255
imgs[imgs > 255] = 255
imgs[imgs < 0] = 0
imgs = imgs.astype(np.uint8)
# torch.tensor(c, t, h, w) -> list[ndarray(h, w, 3)]
imgs = [x for x in imgs.transpose(1, 2, 3, 0)]
results['imgs'] = imgs
return results
@PIPELINES.register_module()
class PoseCompact:
"""Convert the coordinates of keypoints to make it more compact.
Specifically, it first find a tight bounding box that surrounds all joints
in each frame, then we expand the tight box by a given padding ratio. For
example, if 'padding == 0.25', then the expanded box has unchanged center,
and 1.25x width and height.
Required keys in results are "img_shape", "keypoint", add or modified keys
are "img_shape", "keypoint", "crop_quadruple".
Args:
padding (float): The padding size. Default: 0.25.
threshold (int): The threshold for the tight bounding box. If the width
or height of the tight bounding box is smaller than the threshold,
we do not perform the compact operation. Default: 10.
hw_ratio (float | tuple[float] | None): The hw_ratio of the expanded
box. Float indicates the specific ratio and tuple indicates a
ratio range. If set as None, it means there is no requirement on
hw_ratio. Default: None.
allow_imgpad (bool): Whether to allow expanding the box outside the
image to meet the hw_ratio requirement. Default: True.
Returns:
type: Description of returned object.
"""
def __init__(self,
padding=0.25,
threshold=10,
hw_ratio=None,
allow_imgpad=True):
self.padding = padding
self.threshold = threshold
if hw_ratio is not None:
hw_ratio = _pair(hw_ratio)
self.hw_ratio = hw_ratio
self.allow_imgpad = allow_imgpad
assert self.padding >= 0
def __call__(self, results):
img_shape = results['img_shape']
h, w = img_shape
kp = results['keypoint']
# Make NaN zero
kp[np.isnan(kp)] = 0.
kp_x = kp[..., 0]
kp_y = kp[..., 1]
min_x = np.min(kp_x[kp_x != 0], initial=np.Inf)
min_y = np.min(kp_y[kp_y != 0], initial=np.Inf)
max_x = np.max(kp_x[kp_x != 0], initial=-np.Inf)
max_y = np.max(kp_y[kp_y != 0], initial=-np.Inf)
# The compact area is too small
if max_x - min_x < self.threshold or max_y - min_y < self.threshold:
return results
center = ((max_x + min_x) / 2, (max_y + min_y) / 2)
half_width = (max_x - min_x) / 2 * (1 + self.padding)
half_height = (max_y - min_y) / 2 * (1 + self.padding)
if self.hw_ratio is not None:
half_height = max(self.hw_ratio[0] * half_width, half_height)
half_width = max(1 / self.hw_ratio[1] * half_height, half_width)
min_x, max_x = center[0] - half_width, center[0] + half_width
min_y, max_y = center[1] - half_height, center[1] + half_height
# hot update
if not self.allow_imgpad:
min_x, min_y = int(max(0, min_x)), int(max(0, min_y))
max_x, max_y = int(min(w, max_x)), int(min(h, max_y))
else:
min_x, min_y = int(min_x), int(min_y)
max_x, max_y = int(max_x), int(max_y)
kp_x[kp_x != 0] -= min_x
kp_y[kp_y != 0] -= min_y
new_shape = (max_y - min_y, max_x - min_x)
results['img_shape'] = new_shape
# the order is x, y, w, h (in [0, 1]), a tuple
crop_quadruple = results.get('crop_quadruple', (0., 0., 1., 1.))
new_crop_quadruple = (min_x / w, min_y / h, (max_x - min_x) / w,
(max_y - min_y) / h)
crop_quadruple = _combine_quadruple(crop_quadruple, new_crop_quadruple)
results['crop_quadruple'] = crop_quadruple
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(padding={self.padding}, '
f'threshold={self.threshold}, '
f'hw_ratio={self.hw_ratio}, '
f'allow_imgpad={self.allow_imgpad})')
return repr_str
@PIPELINES.register_module()
class Imgaug:
"""Imgaug augmentation.
Adds custom transformations from imgaug library.
Please visit `https://imgaug.readthedocs.io/en/latest/index.html`
to get more information. Two demo configs could be found in tsn and i3d
config folder.
It's better to use uint8 images as inputs since imgaug works best with
numpy dtype uint8 and isn't well tested with other dtypes. It should be
noted that not all of the augmenters have the same input and output dtype,
which may cause unexpected results.
Required keys are "imgs", "img_shape"(if "gt_bboxes" is not None) and
"modality", added or modified keys are "imgs", "img_shape", "gt_bboxes"
and "proposals".
It is worth mentioning that `Imgaug` will NOT create custom keys like
"interpolation", "crop_bbox", "flip_direction", etc. So when using
`Imgaug` along with other mmaction2 pipelines, we should pay more attention
to required keys.
Two steps to use `Imgaug` pipeline:
1. Create initialization parameter `transforms`. There are three ways
to create `transforms`.
1) string: only support `default` for now.
e.g. `transforms='default'`
2) list[dict]: create a list of augmenters by a list of dicts, each
dict corresponds to one augmenter. Every dict MUST contain a key
named `type`. `type` should be a string(iaa.Augmenter's name) or
an iaa.Augmenter subclass.
e.g. `transforms=[dict(type='Rotate', rotate=(-20, 20))]`
e.g. `transforms=[dict(type=iaa.Rotate, rotate=(-20, 20))]`
3) iaa.Augmenter: create an imgaug.Augmenter object.
e.g. `transforms=iaa.Rotate(rotate=(-20, 20))`
2. Add `Imgaug` in dataset pipeline. It is recommended to insert imgaug
pipeline before `Normalize`. A demo pipeline is listed as follows.
```
pipeline = [
dict(
type='SampleFrames',
clip_len=1,
frame_interval=1,
num_clips=16,
),
dict(type='RawFrameDecode'),
dict(type='Resize', scale=(-1, 256)),
dict(
type='MultiScaleCrop',
input_size=224,
scales=(1, 0.875, 0.75, 0.66),
random_crop=False,
max_wh_scale_gap=1,
num_fixed_crops=13),
dict(type='Resize', scale=(224, 224), keep_ratio=False),
dict(type='Flip', flip_ratio=0.5),
dict(type='Imgaug', transforms='default'),
# dict(type='Imgaug', transforms=[
# dict(type='Rotate', rotate=(-20, 20))
# ]),
dict(type='Normalize', **img_norm_cfg),
dict(type='FormatShape', input_format='NCHW'),
dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['imgs', 'label'])
]
```
Args:
transforms (str | list[dict] | :obj:`iaa.Augmenter`): Three different
ways to create imgaug augmenter.
"""
def __init__(self, transforms):
import imgaug.augmenters as iaa
if transforms == 'default':
self.transforms = self.default_transforms()
elif isinstance(transforms, list):
assert all(isinstance(trans, dict) for trans in transforms)
self.transforms = transforms
elif isinstance(transforms, iaa.Augmenter):
self.aug = self.transforms = transforms
else:
raise ValueError('transforms must be `default` or a list of dicts'
' or iaa.Augmenter object')
if not isinstance(transforms, iaa.Augmenter):
self.aug = iaa.Sequential(
[self.imgaug_builder(t) for t in self.transforms])
@staticmethod
def default_transforms():
"""Default transforms for imgaug.
Implement RandAugment by imgaug.
Please visit `https://arxiv.org/abs/1909.13719` for more information.
Augmenters and hyper parameters are borrowed from the following repo:
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py # noqa
Miss one augmenter ``SolarizeAdd`` since imgaug doesn't support this.
Returns:
dict: The constructed RandAugment transforms.
"""
# RandAugment hyper params
num_augmenters = 2
cur_magnitude, max_magnitude = 9, 10
cur_level = 1.0 * cur_magnitude / max_magnitude
return [
dict(
type='SomeOf',
n=num_augmenters,
children=[
dict(
type='ShearX',
shear=17.19 * cur_level * random.choice([-1, 1])),
dict(
type='ShearY',
shear=17.19 * cur_level * random.choice([-1, 1])),
dict(
type='TranslateX',
percent=.2 * cur_level * random.choice([-1, 1])),
dict(
type='TranslateY',
percent=.2 * cur_level * random.choice([-1, 1])),
dict(
type='Rotate',
rotate=30 * cur_level * random.choice([-1, 1])),
dict(type='Posterize', nb_bits=max(1, int(4 * cur_level))),
dict(type='Solarize', threshold=256 * cur_level),
dict(type='EnhanceColor', factor=1.8 * cur_level + .1),
dict(type='EnhanceContrast', factor=1.8 * cur_level + .1),
dict(
type='EnhanceBrightness', factor=1.8 * cur_level + .1),
dict(type='EnhanceSharpness', factor=1.8 * cur_level + .1),
dict(type='Autocontrast', cutoff=0),
dict(type='Equalize'),
dict(type='Invert', p=1.),
dict(
type='Cutout',
nb_iterations=1,
size=0.2 * cur_level,
squared=True)
])
]
def imgaug_builder(self, cfg):
"""Import a module from imgaug.
It follows the logic of :func:`build_from_cfg`. Use a dict object to
create an iaa.Augmenter object.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
Returns:
obj:`iaa.Augmenter`: The constructed imgaug augmenter.
"""
import imgaug.augmenters as iaa
assert isinstance(cfg, dict) and 'type' in cfg
args = cfg.copy()
obj_type = args.pop('type')
if mmcv.is_str(obj_type):
obj_cls = getattr(iaa, obj_type) if hasattr(iaa, obj_type) \
else getattr(iaa.pillike, obj_type)
elif issubclass(obj_type, iaa.Augmenter):
obj_cls = obj_type
else:
raise TypeError(
f'type must be a str or valid type, but got {type(obj_type)}')
if 'children' in args:
args['children'] = [
self.imgaug_builder(child) for child in args['children']
]
return obj_cls(**args)
def __repr__(self):
repr_str = self.__class__.__name__ + f'(transforms={self.aug})'
return repr_str
def __call__(self, results):
assert results['modality'] == 'RGB', 'Imgaug only support RGB images.'
in_type = results['imgs'][0].dtype.type
cur_aug = self.aug.to_deterministic()
results['imgs'] = [
cur_aug.augment_image(frame) for frame in results['imgs']
]
img_h, img_w, _ = results['imgs'][0].shape
out_type = results['imgs'][0].dtype.type
assert in_type == out_type, \
('Imgaug input dtype and output dtype are not the same. ',
f'Convert from {in_type} to {out_type}')
if 'gt_bboxes' in results:
from imgaug.augmentables import bbs
bbox_list = [
bbs.BoundingBox(
x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])
for bbox in results['gt_bboxes']
]
bboxes = bbs.BoundingBoxesOnImage(
bbox_list, shape=results['img_shape'])
bbox_aug, *_ = cur_aug.augment_bounding_boxes([bboxes])
results['gt_bboxes'] = [[
max(bbox.x1, 0),
max(bbox.y1, 0),
min(bbox.x2, img_w),
min(bbox.y2, img_h)
] for bbox in bbox_aug.items]
if 'proposals' in results:
bbox_list = [
bbs.BoundingBox(
x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])
for bbox in results['proposals']
]
bboxes = bbs.BoundingBoxesOnImage(
bbox_list, shape=results['img_shape'])
bbox_aug, *_ = cur_aug.augment_bounding_boxes([bboxes])
results['proposals'] = [[
max(bbox.x1, 0),
max(bbox.y1, 0),
min(bbox.x2, img_w),
min(bbox.y2, img_h)
] for bbox in bbox_aug.items]
results['img_shape'] = (img_h, img_w)
return results
@PIPELINES.register_module()
class Fuse:
"""Fuse lazy operations.
Fusion order:
crop -> resize -> flip
Required keys are "imgs", "img_shape" and "lazy", added or modified keys
are "imgs", "lazy".
Required keys in "lazy" are "crop_bbox", "interpolation", "flip_direction".
"""
def __call__(self, results):
if 'lazy' not in results:
raise ValueError('No lazy operation detected')
lazyop = results['lazy']
imgs = results['imgs']
# crop
left, top, right, bottom = lazyop['crop_bbox'].round().astype(int)
imgs = [img[top:bottom, left:right] for img in imgs]
# resize
img_h, img_w = results['img_shape']
if lazyop['interpolation'] is None:
interpolation = 'bilinear'
else:
interpolation = lazyop['interpolation']
imgs = [
mmcv.imresize(img, (img_w, img_h), interpolation=interpolation)
for img in imgs
]
# flip
if lazyop['flip']:
for img in imgs:
mmcv.imflip_(img, lazyop['flip_direction'])
results['imgs'] = imgs
del results['lazy']
return results
@PIPELINES.register_module()
class RandomCrop:
"""Vanilla square random crop that specifics the output size.
Required keys in results are "img_shape", "keypoint" (optional), "imgs"
(optional), added or modified keys are "keypoint", "imgs", "lazy"; Required
keys in "lazy" are "flip", "crop_bbox", added or modified key is
"crop_bbox".
Args:
size (int): The output size of the images.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self, size, lazy=False):
if not isinstance(size, int):
raise TypeError(f'Size must be an int, but got {type(size)}')
self.size = size
self.lazy = lazy
@staticmethod
def _crop_kps(kps, crop_bbox):
return kps - crop_bbox[:2]
@staticmethod
def _crop_imgs(imgs, crop_bbox):
x1, y1, x2, y2 = crop_bbox
return [img[y1:y2, x1:x2] for img in imgs]
@staticmethod
def _box_crop(box, crop_bbox):
"""Crop the bounding boxes according to the crop_bbox.
Args:
box (np.ndarray): The bounding boxes.
crop_bbox(np.ndarray): The bbox used to crop the original image.
"""
x1, y1, x2, y2 = crop_bbox
img_w, img_h = x2 - x1, y2 - y1
box_ = box.copy()
box_[..., 0::2] = np.clip(box[..., 0::2] - x1, 0, img_w - 1)
box_[..., 1::2] = np.clip(box[..., 1::2] - y1, 0, img_h - 1)
return box_
def _all_box_crop(self, results, crop_bbox):
"""Crop the gt_bboxes and proposals in results according to crop_bbox.
Args:
results (dict): All information about the sample, which contain
'gt_bboxes' and 'proposals' (optional).
crop_bbox(np.ndarray): The bbox used to crop the original image.
"""
results['gt_bboxes'] = self._box_crop(results['gt_bboxes'], crop_bbox)
if 'proposals' in results and results['proposals'] is not None:
assert results['proposals'].shape[1] == 4
results['proposals'] = self._box_crop(results['proposals'],
crop_bbox)
return results
def __call__(self, results):
"""Performs the RandomCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
assert self.size <= img_h and self.size <= img_w
y_offset = 0
x_offset = 0
if img_h > self.size:
y_offset = int(np.random.randint(0, img_h - self.size))
if img_w > self.size:
x_offset = int(np.random.randint(0, img_w - self.size))
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = x_offset / img_w, y_offset / img_h
w_ratio, h_ratio = self.size / img_w, self.size / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
new_h, new_w = self.size, self.size
crop_bbox = np.array(
[x_offset, y_offset, x_offset + new_w, y_offset + new_h])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = x_offset * (lazy_right - lazy_left) / img_w
right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w
top = y_offset * (lazy_bottom - lazy_top) / img_h
bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
# Process entity boxes
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(size={self.size}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register_module()
class RandomResizedCrop(RandomCrop):
"""Random crop that specifics the area and height-weight ratio range.
Required keys in results are "img_shape", "crop_bbox", "imgs" (optional),
"keypoint" (optional), added or modified keys are "imgs", "keypoint",
"crop_bbox" and "lazy"; Required keys in "lazy" are "flip", "crop_bbox",
added or modified key is "crop_bbox".
Args:
area_range (Tuple[float]): The candidate area scales range of
output cropped images. Default: (0.08, 1.0).
aspect_ratio_range (Tuple[float]): The candidate aspect ratio range of
output cropped images. Default: (3 / 4, 4 / 3).
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self,
area_range=(0.08, 1.0),
aspect_ratio_range=(3 / 4, 4 / 3),
lazy=False):
self.area_range = area_range
self.aspect_ratio_range = aspect_ratio_range
self.lazy = lazy
if not mmcv.is_tuple_of(self.area_range, float):
raise TypeError(f'Area_range must be a tuple of float, '
f'but got {type(area_range)}')
if not mmcv.is_tuple_of(self.aspect_ratio_range, float):
raise TypeError(f'Aspect_ratio_range must be a tuple of float, '
f'but got {type(aspect_ratio_range)}')
@staticmethod
def get_crop_bbox(img_shape,
area_range,
aspect_ratio_range,
max_attempts=10):
"""Get a crop bbox given the area range and aspect ratio range.
Args:
img_shape (Tuple[int]): Image shape
area_range (Tuple[float]): The candidate area scales range of
output cropped images. Default: (0.08, 1.0).
aspect_ratio_range (Tuple[float]): The candidate aspect
ratio range of output cropped images. Default: (3 / 4, 4 / 3).
max_attempts (int): The maximum of attempts. Default: 10.
max_attempts (int): Max attempts times to generate random candidate
bounding box. If it doesn't qualified one, the center bounding
box will be used.
Returns:
(list[int]) A random crop bbox within the area range and aspect
ratio range.
"""
assert 0 < area_range[0] <= area_range[1] <= 1
assert 0 < aspect_ratio_range[0] <= aspect_ratio_range[1]
img_h, img_w = img_shape
area = img_h * img_w
min_ar, max_ar = aspect_ratio_range
aspect_ratios = np.exp(
np.random.uniform(
np.log(min_ar), np.log(max_ar), size=max_attempts))
target_areas = np.random.uniform(*area_range, size=max_attempts) * area
candidate_crop_w = np.round(np.sqrt(target_areas *
aspect_ratios)).astype(np.int32)
candidate_crop_h = np.round(np.sqrt(target_areas /
aspect_ratios)).astype(np.int32)
for i in range(max_attempts):
crop_w = candidate_crop_w[i]
crop_h = candidate_crop_h[i]
if crop_h <= img_h and crop_w <= img_w:
x_offset = random.randint(0, img_w - crop_w)
y_offset = random.randint(0, img_h - crop_h)
return x_offset, y_offset, x_offset + crop_w, y_offset + crop_h
# Fallback
crop_size = min(img_h, img_w)
x_offset = (img_w - crop_size) // 2
y_offset = (img_h - crop_size) // 2
return x_offset, y_offset, x_offset + crop_size, y_offset + crop_size
def __call__(self, results):
"""Performs the RandomResizeCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
left, top, right, bottom = self.get_crop_bbox(
(img_h, img_w), self.area_range, self.aspect_ratio_range)
new_h, new_w = bottom - top, right - left
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = left / img_w, top / img_h
w_ratio, h_ratio = new_w / img_w, new_h / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
crop_bbox = np.array([left, top, right, bottom])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = left * (lazy_right - lazy_left) / img_w
right = right * (lazy_right - lazy_left) / img_w
top = top * (lazy_bottom - lazy_top) / img_h
bottom = bottom * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'area_range={self.area_range}, '
f'aspect_ratio_range={self.aspect_ratio_range}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register_module()
class MultiScaleCrop(RandomCrop):
"""Crop images with a list of randomly selected scales.
Randomly select the w and h scales from a list of scales. Scale of 1 means
the base size, which is the minimal of image width and height. The scale
level of w and h is controlled to be smaller than a certain value to
prevent too large or small aspect ratio.
Required keys are "img_shape", "imgs" (optional), "keypoint" (optional),
added or modified keys are "imgs", "crop_bbox", "img_shape", "lazy" and
"scales". Required keys in "lazy" are "crop_bbox", added or modified key is
"crop_bbox".
Args:
input_size (int | tuple[int]): (w, h) of network input.
scales (tuple[float]): width and height scales to be selected.
max_wh_scale_gap (int): Maximum gap of w and h scale levels.
Default: 1.
random_crop (bool): If set to True, the cropping bbox will be randomly
sampled, otherwise it will be sampler from fixed regions.
Default: False.
num_fixed_crops (int): If set to 5, the cropping bbox will keep 5
basic fixed regions: "upper left", "upper right", "lower left",
"lower right", "center". If set to 13, the cropping bbox will
append another 8 fix regions: "center left", "center right",
"lower center", "upper center", "upper left quarter",
"upper right quarter", "lower left quarter", "lower right quarter".
Default: 5.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self,
input_size,
scales=(1, ),
max_wh_scale_gap=1,
random_crop=False,
num_fixed_crops=5,
lazy=False):
self.input_size = _pair(input_size)
if not mmcv.is_tuple_of(self.input_size, int):
raise TypeError(f'Input_size must be int or tuple of int, '
f'but got {type(input_size)}')
if not isinstance(scales, tuple):
raise TypeError(f'Scales must be tuple, but got {type(scales)}')
if num_fixed_crops not in [5, 13]:
raise ValueError(f'Num_fix_crops must be in {[5, 13]}, '
f'but got {num_fixed_crops}')
self.scales = scales
self.max_wh_scale_gap = max_wh_scale_gap
self.random_crop = random_crop
self.num_fixed_crops = num_fixed_crops
self.lazy = lazy
def __call__(self, results):
"""Performs the MultiScaleCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
base_size = min(img_h, img_w)
crop_sizes = [int(base_size * s) for s in self.scales]
candidate_sizes = []
for i, h in enumerate(crop_sizes):
for j, w in enumerate(crop_sizes):
if abs(i - j) <= self.max_wh_scale_gap:
candidate_sizes.append([w, h])
crop_size = random.choice(candidate_sizes)
for i in range(2):
if abs(crop_size[i] - self.input_size[i]) < 3:
crop_size[i] = self.input_size[i]
crop_w, crop_h = crop_size
if self.random_crop:
x_offset = random.randint(0, img_w - crop_w)
y_offset = random.randint(0, img_h - crop_h)
else:
w_step = (img_w - crop_w) // 4
h_step = (img_h - crop_h) // 4
candidate_offsets = [
(0, 0), # upper left
(4 * w_step, 0), # upper right
(0, 4 * h_step), # lower left
(4 * w_step, 4 * h_step), # lower right
(2 * w_step, 2 * h_step), # center
]
if self.num_fixed_crops == 13:
extra_candidate_offsets = [
(0, 2 * h_step), # center left
(4 * w_step, 2 * h_step), # center right
(2 * w_step, 4 * h_step), # lower center
(2 * w_step, 0 * h_step), # upper center
(1 * w_step, 1 * h_step), # upper left quarter
(3 * w_step, 1 * h_step), # upper right quarter
(1 * w_step, 3 * h_step), # lower left quarter
(3 * w_step, 3 * h_step) # lower right quarter
]
candidate_offsets.extend(extra_candidate_offsets)
x_offset, y_offset = random.choice(candidate_offsets)
new_h, new_w = crop_h, crop_w
crop_bbox = np.array(
[x_offset, y_offset, x_offset + new_w, y_offset + new_h])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
results['scales'] = self.scales
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = x_offset / img_w, y_offset / img_h
w_ratio, h_ratio = new_w / img_w, new_h / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = x_offset * (lazy_right - lazy_left) / img_w
right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w
top = y_offset * (lazy_bottom - lazy_top) / img_h
bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'input_size={self.input_size}, scales={self.scales}, '
f'max_wh_scale_gap={self.max_wh_scale_gap}, '
f'random_crop={self.random_crop}, '
f'num_fixed_crops={self.num_fixed_crops}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register_module()
class Resize:
"""Resize images to a specific size.
Required keys are "img_shape", "modality", "imgs" (optional), "keypoint"
(optional), added or modified keys are "imgs", "img_shape", "keep_ratio",
"scale_factor", "lazy", "resize_size". Required keys in "lazy" is None,
added or modified key is "interpolation".
Args:
scale (float | Tuple[int]): If keep_ratio is True, it serves as scaling
factor or maximum size:
If it is a float number, the image will be rescaled by this
factor, else if it is a tuple of 2 integers, the image will
be rescaled as large as possible within the scale.
Otherwise, it serves as (w, h) of output size.
keep_ratio (bool): If set to True, Images will be resized without
changing the aspect ratio. Otherwise, it will resize images to a
given size. Default: True.
interpolation (str): Algorithm used for interpolation:
"nearest" | "bilinear". Default: "bilinear".
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self,
scale,
keep_ratio=True,
interpolation='bilinear',
lazy=False):
if isinstance(scale, float):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
if max_short_edge == -1:
# assign np.inf to long edge for rescaling short edge later.
scale = (np.inf, max_long_edge)
else:
raise TypeError(
f'Scale must be float or tuple of int, but got {type(scale)}')
self.scale = scale
self.keep_ratio = keep_ratio
self.interpolation = interpolation
self.lazy = lazy
def _resize_imgs(self, imgs, new_w, new_h):
return [
mmcv.imresize(
img, (new_w, new_h), interpolation=self.interpolation)
for img in imgs
]
@staticmethod
def _resize_kps(kps, scale_factor):
return kps * scale_factor
@staticmethod
def _box_resize(box, scale_factor):
"""Rescale the bounding boxes according to the scale_factor.
Args:
box (np.ndarray): The bounding boxes.
scale_factor (np.ndarray): The scale factor used for rescaling.
"""
assert len(scale_factor) == 2
scale_factor = np.concatenate([scale_factor, scale_factor])
return box * scale_factor
def __call__(self, results):
"""Performs the Resize augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
if 'scale_factor' not in results:
results['scale_factor'] = np.array([1, 1], dtype=np.float32)
img_h, img_w = results['img_shape']
if self.keep_ratio:
new_w, new_h = mmcv.rescale_size((img_w, img_h), self.scale)
else:
new_w, new_h = self.scale
self.scale_factor = np.array([new_w / img_w, new_h / img_h],
dtype=np.float32)
results['img_shape'] = (new_h, new_w)
results['keep_ratio'] = self.keep_ratio
results['scale_factor'] = results['scale_factor'] * self.scale_factor
if not self.lazy:
if 'imgs' in results:
results['imgs'] = self._resize_imgs(results['imgs'], new_w,
new_h)
if 'keypoint' in results:
results['keypoint'] = self._resize_kps(results['keypoint'],
self.scale_factor)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
lazyop['interpolation'] = self.interpolation
if 'gt_bboxes' in results:
assert not self.lazy
results['gt_bboxes'] = self._box_resize(results['gt_bboxes'],
self.scale_factor)
if 'proposals' in results and results['proposals'] is not None:
assert results['proposals'].shape[1] == 4
results['proposals'] = self._box_resize(
results['proposals'], self.scale_factor)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'scale={self.scale}, keep_ratio={self.keep_ratio}, '
f'interpolation={self.interpolation}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register_module()
class RandomRescale:
"""Randomly resize images so that the short_edge is resized to a specific
size in a given range. The scale ratio is unchanged after resizing.
Required keys are "imgs", "img_shape", "modality", added or modified
keys are "imgs", "img_shape", "keep_ratio", "scale_factor", "resize_size",
"short_edge".
Args:
scale_range (tuple[int]): The range of short edge length. A closed
interval.
interpolation (str): Algorithm used for interpolation:
"nearest" | "bilinear". Default: "bilinear".
"""
def __init__(self, scale_range, interpolation='bilinear'):
self.scale_range = scale_range
# make sure scale_range is legal, first make sure the type is OK
assert mmcv.is_tuple_of(scale_range, int)
assert len(scale_range) == 2
assert scale_range[0] < scale_range[1]
assert np.all([x > 0 for x in scale_range])
self.keep_ratio = True
self.interpolation = interpolation
def __call__(self, results):
"""Performs the Resize augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
short_edge = np.random.randint(self.scale_range[0],
self.scale_range[1] + 1)
resize = Resize((-1, short_edge),
keep_ratio=True,
interpolation=self.interpolation,
lazy=False)
results = resize(results)
results['short_edge'] = short_edge
return results
def __repr__(self):
scale_range = self.scale_range
repr_str = (f'{self.__class__.__name__}('
f'scale_range=({scale_range[0]}, {scale_range[1]}), '
f'interpolation={self.interpolation})')
return repr_str
@PIPELINES.register_module()
class Flip:
"""Flip the input images with a probability.
Reverse the order of elements in the given imgs with a specific direction.
The shape of the imgs is preserved, but the elements are reordered.
Required keys are "img_shape", "modality", "imgs" (optional), "keypoint"
(optional), added or modified keys are "imgs", "keypoint", "lazy" and
"flip_direction". Required keys in "lazy" is None, added or modified key
are "flip" and "flip_direction". The Flip augmentation should be placed
after any cropping / reshaping augmentations, to make sure crop_quadruple
is calculated properly.
Args:
flip_ratio (float): Probability of implementing flip. Default: 0.5.
direction (str): Flip imgs horizontally or vertically. Options are
"horizontal" | "vertical". Default: "horizontal".
flip_label_map (Dict[int, int] | None): Transform the label of the
flipped image with the specific label. Default: None.
left_kp (list[int]): Indexes of left keypoints, used to flip keypoints.
Default: None.
right_kp (list[ind]): Indexes of right keypoints, used to flip
keypoints. Default: None.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
_directions = ['horizontal', 'vertical']
def __init__(self,
flip_ratio=0.5,
direction='horizontal',
flip_label_map=None,
left_kp=None,
right_kp=None,
lazy=False):
if direction not in self._directions:
raise ValueError(f'Direction {direction} is not supported. '
f'Currently support ones are {self._directions}')
self.flip_ratio = flip_ratio
self.direction = direction
self.flip_label_map = flip_label_map
self.left_kp = left_kp
self.right_kp = right_kp
self.lazy = lazy
def _flip_imgs(self, imgs, modality):
_ = [mmcv.imflip_(img, self.direction) for img in imgs]
lt = len(imgs)
if modality == 'Flow':
# The 1st frame of each 2 frames is flow-x
for i in range(0, lt, 2):
imgs[i] = mmcv.iminvert(imgs[i])
return imgs
def _flip_kps(self, kps, kpscores, img_width):
kp_x = kps[..., 0]
kp_x[kp_x != 0] = img_width - kp_x[kp_x != 0]
new_order = list(range(kps.shape[2]))
if self.left_kp is not None and self.right_kp is not None:
for left, right in zip(self.left_kp, self.right_kp):
new_order[left] = right
new_order[right] = left
kps = kps[:, :, new_order]
if kpscores is not None:
kpscores = kpscores[:, :, new_order]
return kps, kpscores
@staticmethod
def _box_flip(box, img_width):
"""Flip the bounding boxes given the width of the image.
Args:
box (np.ndarray): The bounding boxes.
img_width (int): The img width.
"""
box_ = box.copy()
box_[..., 0::4] = img_width - box[..., 2::4]
box_[..., 2::4] = img_width - box[..., 0::4]
return box_
def __call__(self, results):
"""Performs the Flip augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
assert self.direction == 'horizontal', (
'Only horizontal flips are'
'supported for human keypoints')
modality = results['modality']
if modality == 'Flow':
assert self.direction == 'horizontal'
flip = np.random.rand() < self.flip_ratio
results['flip'] = flip
results['flip_direction'] = self.direction
img_width = results['img_shape'][1]
if self.flip_label_map is not None and flip:
results['label'] = self.flip_label_map.get(results['label'],
results['label'])
if not self.lazy:
if flip:
if 'imgs' in results:
results['imgs'] = self._flip_imgs(results['imgs'],
modality)
if 'keypoint' in results:
kp = results['keypoint']
kpscore = results.get('keypoint_score', None)
kp, kpscore = self._flip_kps(kp, kpscore, img_width)
results['keypoint'] = kp
if 'keypoint_score' in results:
results['keypoint_score'] = kpscore
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Use one Flip please')
lazyop['flip'] = flip
lazyop['flip_direction'] = self.direction
if 'gt_bboxes' in results and flip:
assert not self.lazy and self.direction == 'horizontal'
width = results['img_shape'][1]
results['gt_bboxes'] = self._box_flip(results['gt_bboxes'], width)
if 'proposals' in results and results['proposals'] is not None:
assert results['proposals'].shape[1] == 4
results['proposals'] = self._box_flip(results['proposals'],
width)
return results
def __repr__(self):
repr_str = (
f'{self.__class__.__name__}('
f'flip_ratio={self.flip_ratio}, direction={self.direction}, '
f'flip_label_map={self.flip_label_map}, lazy={self.lazy})')
return repr_str
@PIPELINES.register_module()
class Normalize:
"""Normalize images with the given mean and std value.
Required keys are "imgs", "img_shape", "modality", added or modified
keys are "imgs" and "img_norm_cfg". If modality is 'Flow', additional
keys "scale_factor" is required
Args:
mean (Sequence[float]): Mean values of different channels.
std (Sequence[float]): Std values of different channels.
to_bgr (bool): Whether to convert channels from RGB to BGR.
Default: False.
adjust_magnitude (bool): Indicate whether to adjust the flow magnitude
on 'scale_factor' when modality is 'Flow'. Default: False.
"""
def __init__(self, mean, std, to_bgr=False, adjust_magnitude=False):
if not isinstance(mean, Sequence):
raise TypeError(
f'Mean must be list, tuple or np.ndarray, but got {type(mean)}'
)
if not isinstance(std, Sequence):
raise TypeError(
f'Std must be list, tuple or np.ndarray, but got {type(std)}')
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.to_bgr = to_bgr
self.adjust_magnitude = adjust_magnitude
def __call__(self, results):
modality = results['modality']
if modality == 'RGB':
n = len(results['imgs'])
h, w, c = results['imgs'][0].shape
imgs = np.empty((n, h, w, c), dtype=np.float32)
for i, img in enumerate(results['imgs']):
imgs[i] = img
for img in imgs:
mmcv.imnormalize_(img, self.mean, self.std, self.to_bgr)
results['imgs'] = imgs
results['img_norm_cfg'] = dict(
mean=self.mean, std=self.std, to_bgr=self.to_bgr)
return results
if modality == 'Flow':
num_imgs = len(results['imgs'])
assert num_imgs % 2 == 0
assert self.mean.shape[0] == 2
assert self.std.shape[0] == 2
n = num_imgs // 2
h, w = results['imgs'][0].shape
x_flow = np.empty((n, h, w), dtype=np.float32)
y_flow = np.empty((n, h, w), dtype=np.float32)
for i in range(n):
x_flow[i] = results['imgs'][2 * i]
y_flow[i] = results['imgs'][2 * i + 1]
x_flow = (x_flow - self.mean[0]) / self.std[0]
y_flow = (y_flow - self.mean[1]) / self.std[1]
if self.adjust_magnitude:
x_flow = x_flow * results['scale_factor'][0]
y_flow = y_flow * results['scale_factor'][1]
imgs = np.stack([x_flow, y_flow], axis=-1)
results['imgs'] = imgs
args = dict(
mean=self.mean,
std=self.std,
to_bgr=self.to_bgr,
adjust_magnitude=self.adjust_magnitude)
results['img_norm_cfg'] = args
return results
raise NotImplementedError
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'mean={self.mean}, '
f'std={self.std}, '
f'to_bgr={self.to_bgr}, '
f'adjust_magnitude={self.adjust_magnitude})')
return repr_str
@PIPELINES.register_module()
class ColorJitter:
"""Perform ColorJitter to each img.
Required keys are "imgs", added or modified keys are "imgs".
Args:
brightness (float | tuple[float]): The jitter range for brightness, if
set as a float, the range will be (1 - brightness, 1 + brightness).
Default: 0.5.
contrast (float | tuple[float]): The jitter range for contrast, if set
as a float, the range will be (1 - contrast, 1 + contrast).
Default: 0.5.
saturation (float | tuple[float]): The jitter range for saturation, if
set as a float, the range will be (1 - saturation, 1 + saturation).
Default: 0.5.
hue (float | tuple[float]): The jitter range for hue, if set as a
float, the range will be (-hue, hue). Default: 0.1.
"""
@staticmethod
def check_input(val, max, base):
if isinstance(val, tuple):
assert base - max <= val[0] <= val[1] <= base + max
return val
assert val <= max
return (base - val, base + val)
@staticmethod
def rgb_to_grayscale(img):
return 0.2989 * img[..., 0] + 0.587 * img[..., 1] + 0.114 * img[..., 2]
@staticmethod
def adjust_contrast(img, factor):
val = np.mean(ColorJitter.rgb_to_grayscale(img))
return factor * img + (1 - factor) * val
@staticmethod
def adjust_saturation(img, factor):
gray = np.stack([ColorJitter.rgb_to_grayscale(img)] * 3, axis=-1)
return factor * img + (1 - factor) * gray
@staticmethod
def adjust_hue(img, factor):
img = np.clip(img, 0, 255).astype(np.uint8)
hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
offset = int(factor * 255)
hsv[..., 0] = (hsv[..., 0] + offset) % 180
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
return img.astype(np.float32)
def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1):
self.brightness = self.check_input(brightness, 1, 1)
self.contrast = self.check_input(contrast, 1, 1)
self.saturation = self.check_input(saturation, 1, 1)
self.hue = self.check_input(hue, 0.5, 0)
self.fn_idx = np.random.permutation(4)
def __call__(self, results):
imgs = results['imgs']
num_clips, clip_len = 1, len(imgs)
new_imgs = []
for i in range(num_clips):
b = np.random.uniform(
low=self.brightness[0], high=self.brightness[1])
c = np.random.uniform(low=self.contrast[0], high=self.contrast[1])
s = np.random.uniform(
low=self.saturation[0], high=self.saturation[1])
h = np.random.uniform(low=self.hue[0], high=self.hue[1])
start, end = i * clip_len, (i + 1) * clip_len
for img in imgs[start:end]:
img = img.astype(np.float32)
for fn_id in self.fn_idx:
if fn_id == 0 and b != 1:
img *= b
if fn_id == 1 and c != 1:
img = self.adjust_contrast(img, c)
if fn_id == 2 and s != 1:
img = self.adjust_saturation(img, s)
if fn_id == 3 and h != 0:
img = self.adjust_hue(img, h)
img = np.clip(img, 0, 255).astype(np.uint8)
new_imgs.append(img)
results['imgs'] = new_imgs
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'brightness={self.brightness}, '
f'contrast={self.contrast}, '
f'saturation={self.saturation}, '
f'hue={self.hue})')
return repr_str
@PIPELINES.register_module()
class CenterCrop(RandomCrop):
"""Crop the center area from images.
Required keys are "img_shape", "imgs" (optional), "keypoint" (optional),
added or modified keys are "imgs", "keypoint", "crop_bbox", "lazy" and
"img_shape". Required keys in "lazy" is "crop_bbox", added or modified key
is "crop_bbox".
Args:
crop_size (int | tuple[int]): (w, h) of crop size.
lazy (bool): Determine whether to apply lazy operation. Default: False.
"""
def __init__(self, crop_size, lazy=False):
self.crop_size = _pair(crop_size)
self.lazy = lazy
if not mmcv.is_tuple_of(self.crop_size, int):
raise TypeError(f'Crop_size must be int or tuple of int, '
f'but got {type(crop_size)}')
def __call__(self, results):
"""Performs the CenterCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, self.lazy)
if 'keypoint' in results:
assert not self.lazy, ('Keypoint Augmentations are not compatible '
'with lazy == True')
img_h, img_w = results['img_shape']
crop_w, crop_h = self.crop_size
left = (img_w - crop_w) // 2
top = (img_h - crop_h) // 2
right = left + crop_w
bottom = top + crop_h
new_h, new_w = bottom - top, right - left
crop_bbox = np.array([left, top, right, bottom])
results['crop_bbox'] = crop_bbox
results['img_shape'] = (new_h, new_w)
if 'crop_quadruple' not in results:
results['crop_quadruple'] = np.array(
[0, 0, 1, 1], # x, y, w, h
dtype=np.float32)
x_ratio, y_ratio = left / img_w, top / img_h
w_ratio, h_ratio = new_w / img_w, new_h / img_h
old_crop_quadruple = results['crop_quadruple']
old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1]
old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3]
new_crop_quadruple = [
old_x_ratio + x_ratio * old_w_ratio,
old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio,
h_ratio * old_h_ratio
]
results['crop_quadruple'] = np.array(
new_crop_quadruple, dtype=np.float32)
if not self.lazy:
if 'keypoint' in results:
results['keypoint'] = self._crop_kps(results['keypoint'],
crop_bbox)
if 'imgs' in results:
results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox)
else:
lazyop = results['lazy']
if lazyop['flip']:
raise NotImplementedError('Put Flip at last for now')
# record crop_bbox in lazyop dict to ensure only crop once in Fuse
lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox']
left = left * (lazy_right - lazy_left) / img_w
right = right * (lazy_right - lazy_left) / img_w
top = top * (lazy_bottom - lazy_top) / img_h
bottom = bottom * (lazy_bottom - lazy_top) / img_h
lazyop['crop_bbox'] = np.array([(lazy_left + left),
(lazy_top + top),
(lazy_left + right),
(lazy_top + bottom)],
dtype=np.float32)
if 'gt_bboxes' in results:
assert not self.lazy
results = self._all_box_crop(results, results['crop_bbox'])
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}(crop_size={self.crop_size}, '
f'lazy={self.lazy})')
return repr_str
@PIPELINES.register_module()
class ThreeCrop:
"""Crop images into three crops.
Crop the images equally into three crops with equal intervals along the
shorter side.
Required keys are "imgs", "img_shape", added or modified keys are "imgs",
"crop_bbox" and "img_shape".
Args:
crop_size(int | tuple[int]): (w, h) of crop size.
"""
def __init__(self, crop_size):
self.crop_size = _pair(crop_size)
if not mmcv.is_tuple_of(self.crop_size, int):
raise TypeError(f'Crop_size must be int or tuple of int, '
f'but got {type(crop_size)}')
def __call__(self, results):
"""Performs the ThreeCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, False)
if 'gt_bboxes' in results or 'proposals' in results:
warnings.warn('ThreeCrop cannot process bounding boxes')
imgs = results['imgs']
img_h, img_w = results['imgs'][0].shape[:2]
crop_w, crop_h = self.crop_size
assert crop_h == img_h or crop_w == img_w
if crop_h == img_h:
w_step = (img_w - crop_w) // 2
offsets = [
(0, 0), # left
(2 * w_step, 0), # right
(w_step, 0), # middle
]
elif crop_w == img_w:
h_step = (img_h - crop_h) // 2
offsets = [
(0, 0), # top
(0, 2 * h_step), # down
(0, h_step), # middle
]
cropped = []
crop_bboxes = []
for x_offset, y_offset in offsets:
bbox = [x_offset, y_offset, x_offset + crop_w, y_offset + crop_h]
crop = [
img[y_offset:y_offset + crop_h, x_offset:x_offset + crop_w]
for img in imgs
]
cropped.extend(crop)
crop_bboxes.extend([bbox for _ in range(len(imgs))])
crop_bboxes = np.array(crop_bboxes)
results['imgs'] = cropped
results['crop_bbox'] = crop_bboxes
results['img_shape'] = results['imgs'][0].shape[:2]
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}(crop_size={self.crop_size})'
return repr_str
@PIPELINES.register_module()
class TenCrop:
"""Crop the images into 10 crops (corner + center + flip).
Crop the four corners and the center part of the image with the same
given crop_size, and flip it horizontally.
Required keys are "imgs", "img_shape", added or modified keys are "imgs",
"crop_bbox" and "img_shape".
Args:
crop_size(int | tuple[int]): (w, h) of crop size.
"""
def __init__(self, crop_size):
self.crop_size = _pair(crop_size)
if not mmcv.is_tuple_of(self.crop_size, int):
raise TypeError(f'Crop_size must be int or tuple of int, '
f'but got {type(crop_size)}')
def __call__(self, results):
"""Performs the TenCrop augmentation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
_init_lazy_if_proper(results, False)
if 'gt_bboxes' in results or 'proposals' in results:
warnings.warn('TenCrop cannot process bounding boxes')
imgs = results['imgs']
img_h, img_w = results['imgs'][0].shape[:2]
crop_w, crop_h = self.crop_size
w_step = (img_w - crop_w) // 4
h_step = (img_h - crop_h) // 4
offsets = [
(0, 0), # upper left
(4 * w_step, 0), # upper right
(0, 4 * h_step), # lower left
(4 * w_step, 4 * h_step), # lower right
(2 * w_step, 2 * h_step), # center
]
img_crops = list()
crop_bboxes = list()
for x_offset, y_offsets in offsets:
crop = [
img[y_offsets:y_offsets + crop_h, x_offset:x_offset + crop_w]
for img in imgs
]
flip_crop = [np.flip(c, axis=1).copy() for c in crop]
bbox = [x_offset, y_offsets, x_offset + crop_w, y_offsets + crop_h]
img_crops.extend(crop)
img_crops.extend(flip_crop)
crop_bboxes.extend([bbox for _ in range(len(imgs) * 2)])
crop_bboxes = np.array(crop_bboxes)
results['imgs'] = img_crops
results['crop_bbox'] = crop_bboxes
results['img_shape'] = results['imgs'][0].shape[:2]
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}(crop_size={self.crop_size})'
return repr_str
@PIPELINES.register_module()
class AudioAmplify:
"""Amplify the waveform.
Required keys are "audios", added or modified keys are "audios",
"amplify_ratio".
Args:
ratio (float): The ratio used to amplify the audio waveform.
"""
def __init__(self, ratio):
if isinstance(ratio, float):
self.ratio = ratio
else:
raise TypeError('Amplification ratio should be float.')
def __call__(self, results):
"""Perform the audio amplification.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
assert 'audios' in results
results['audios'] *= self.ratio
results['amplify_ratio'] = self.ratio
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}(ratio={self.ratio})'
return repr_str
@PIPELINES.register_module()
class MelSpectrogram:
"""MelSpectrogram. Transfer an audio wave into a melspectogram figure.
Required keys are "audios", "sample_rate", "num_clips", added or modified
keys are "audios".
Args:
window_size (int): The window size in millisecond. Default: 32.
step_size (int): The step size in millisecond. Default: 16.
n_mels (int): Number of mels. Default: 80.
fixed_length (int): The sample length of melspectrogram maybe not
exactly as wished due to different fps, fix the length for batch
collation by truncating or padding. Default: 128.
"""
def __init__(self,
window_size=32,
step_size=16,
n_mels=80,
fixed_length=128):
if all(
isinstance(x, int)
for x in [window_size, step_size, n_mels, fixed_length]):
self.window_size = window_size
self.step_size = step_size
self.n_mels = n_mels
self.fixed_length = fixed_length
else:
raise TypeError('All arguments should be int.')
def __call__(self, results):
"""Perform MelSpectrogram transformation.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
try:
import librosa
except ImportError:
raise ImportError('Install librosa first.')
signals = results['audios']
sample_rate = results['sample_rate']
n_fft = int(round(sample_rate * self.window_size / 1000))
hop_length = int(round(sample_rate * self.step_size / 1000))
melspectrograms = list()
for clip_idx in range(results['num_clips']):
clip_signal = signals[clip_idx]
mel = librosa.feature.melspectrogram(
y=clip_signal,
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
n_mels=self.n_mels)
if mel.shape[0] >= self.fixed_length:
mel = mel[:self.fixed_length, :]
else:
mel = np.pad(
mel, ((0, mel.shape[-1] - self.fixed_length), (0, 0)),
mode='edge')
melspectrograms.append(mel)
results['audios'] = np.array(melspectrograms)
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}'
f'(window_size={self.window_size}), '
f'step_size={self.step_size}, '
f'n_mels={self.n_mels}, '
f'fixed_length={self.fixed_length})')
return repr_str