# Copyright (c) OpenMMLab. All rights reserved.
import platform
import random
from functools import partial
import numpy as np
import torch
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from mmcv.utils import Registry, build_from_cfg, digit_version
from torch.utils.data import DataLoader
from .samplers import ClassSpecificDistributedSampler, DistributedSampler
if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
hard_limit = rlimit[1]
soft_limit = min(4096, hard_limit)
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')
BLENDINGS = Registry('blending')
def build_dataset(cfg, default_args=None):
"""Build a dataset from config dict.
Args:
cfg (dict): Config dict. It should at least contain the key "type".
default_args (dict | None, optional): Default initialization arguments.
Default: None.
Returns:
Dataset: The constructed dataset.
"""
dataset = build_from_cfg(cfg, DATASETS, default_args)
return dataset
def build_dataloader(dataset,
videos_per_gpu,
workers_per_gpu,
num_gpus=1,
dist=True,
shuffle=True,
seed=None,
drop_last=False,
pin_memory=True,
persistent_workers=False,
**kwargs):
"""Build PyTorch DataLoader.
In distributed training, each GPU/process has a dataloader.
In non-distributed training, there is only one dataloader for all GPUs.
Args:
dataset (:obj:`Dataset`): A PyTorch dataset.
videos_per_gpu (int): Number of videos on each GPU, i.e.,
batch size of each GPU.
workers_per_gpu (int): How many subprocesses to use for data
loading for each GPU.
num_gpus (int): Number of GPUs. Only used in non-distributed
training. Default: 1.
dist (bool): Distributed training/test or not. Default: True.
shuffle (bool): Whether to shuffle the data at every epoch.
Default: True.
seed (int | None): Seed to be used. Default: None.
drop_last (bool): Whether to drop the last incomplete batch in epoch.
Default: False
pin_memory (bool): Whether to use pin_memory in DataLoader.
Default: True
persistent_workers (bool): If True, the data loader will not shutdown
the worker processes after a dataset has been consumed once.
This allows to maintain the workers Dataset instances alive.
The argument also has effect in PyTorch>=1.8.0.
Default: False
kwargs (dict, optional): Any keyword argument to be used to initialize
DataLoader.
Returns:
DataLoader: A PyTorch dataloader.
"""
rank, world_size = get_dist_info()
sample_by_class = getattr(dataset, 'sample_by_class', False)
if dist:
if sample_by_class:
dynamic_length = getattr(dataset, 'dynamic_length', True)
sampler = ClassSpecificDistributedSampler(
dataset,
world_size,
rank,
dynamic_length=dynamic_length,
shuffle=shuffle,
seed=seed)
else:
sampler = DistributedSampler(
dataset, world_size, rank, shuffle=shuffle, seed=seed)
shuffle = False
batch_size = videos_per_gpu
num_workers = workers_per_gpu
else:
sampler = None
batch_size = num_gpus * videos_per_gpu
num_workers = num_gpus * workers_per_gpu
init_fn = partial(
worker_init_fn, num_workers=num_workers, rank=rank,
seed=seed) if seed is not None else None
if digit_version(torch.__version__) >= digit_version('1.8.0'):
kwargs['persistent_workers'] = persistent_workers
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate, samples_per_gpu=videos_per_gpu),
pin_memory=pin_memory,
shuffle=shuffle,
worker_init_fn=init_fn,
drop_last=drop_last,
**kwargs)
return data_loader
def worker_init_fn(worker_id, num_workers, rank, seed):
"""Init the random seed for various workers."""
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)