[6d389a]: / mmaction / core / evaluation / accuracy.py

Download this file

565 lines (464 with data), 22.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
def confusion_matrix(y_pred, y_real, normalize=None):
"""Compute confusion matrix.
Args:
y_pred (list[int] | np.ndarray[int]): Prediction labels.
y_real (list[int] | np.ndarray[int]): Ground truth labels.
normalize (str | None): Normalizes confusion matrix over the true
(rows), predicted (columns) conditions or all the population.
If None, confusion matrix will not be normalized. Options are
"true", "pred", "all", None. Default: None.
Returns:
np.ndarray: Confusion matrix.
"""
if normalize not in ['true', 'pred', 'all', None]:
raise ValueError("normalize must be one of {'true', 'pred', "
"'all', None}")
if isinstance(y_pred, list):
y_pred = np.array(y_pred)
if not isinstance(y_pred, np.ndarray):
raise TypeError(
f'y_pred must be list or np.ndarray, but got {type(y_pred)}')
if not y_pred.dtype == np.int64:
raise TypeError(
f'y_pred dtype must be np.int64, but got {y_pred.dtype}')
if isinstance(y_real, list):
y_real = np.array(y_real)
if not isinstance(y_real, np.ndarray):
raise TypeError(
f'y_real must be list or np.ndarray, but got {type(y_real)}')
if not y_real.dtype == np.int64:
raise TypeError(
f'y_real dtype must be np.int64, but got {y_real.dtype}')
label_set = np.unique(np.concatenate((y_pred, y_real)))
num_labels = len(label_set)
max_label = label_set[-1]
label_map = np.zeros(max_label + 1, dtype=np.int64)
for i, label in enumerate(label_set):
label_map[label] = i
y_pred_mapped = label_map[y_pred]
y_real_mapped = label_map[y_real]
confusion_mat = np.bincount(
num_labels * y_real_mapped + y_pred_mapped,
minlength=num_labels**2).reshape(num_labels, num_labels)
with np.errstate(all='ignore'):
if normalize == 'true':
confusion_mat = (
confusion_mat / confusion_mat.sum(axis=1, keepdims=True))
elif normalize == 'pred':
confusion_mat = (
confusion_mat / confusion_mat.sum(axis=0, keepdims=True))
elif normalize == 'all':
confusion_mat = (confusion_mat / confusion_mat.sum())
confusion_mat = np.nan_to_num(confusion_mat)
return confusion_mat
def mean_class_accuracy(scores, labels):
"""Calculate mean class accuracy.
Args:
scores (list[np.ndarray]): Prediction scores for each class.
labels (list[int]): Ground truth labels.
Returns:
np.ndarray: Mean class accuracy.
"""
pred = np.argmax(scores, axis=1)
cf_mat = confusion_matrix(pred, labels).astype(float)
cls_cnt = cf_mat.sum(axis=1)
cls_hit = np.diag(cf_mat)
mean_class_acc = np.mean(
[hit / cnt if cnt else 0.0 for cnt, hit in zip(cls_cnt, cls_hit)])
return mean_class_acc
def top_k_classes(scores, labels, k=10, mode='accurate'):
"""Calculate the most K accurate (inaccurate) classes.
Given the prediction scores, ground truth label and top-k value,
compute the top K accurate (inaccurate) classes.
Args:
scores (list[np.ndarray]): Prediction scores for each class.
labels (list[int] | np.ndarray): Ground truth labels.
k (int): Top-k values. Default: 10.
mode (str): Comparison mode for Top-k. Options are 'accurate'
and 'inaccurate'. Default: 'accurate'.
Return:
list: List of sorted (from high accuracy to low accuracy for
'accurate' mode, and from low accuracy to high accuracy for
inaccurate mode) top K classes in format of (label_id,
acc_ratio).
"""
assert mode in ['accurate', 'inaccurate']
pred = np.argmax(scores, axis=1)
cf_mat = confusion_matrix(pred, labels).astype(float)
cls_cnt = cf_mat.sum(axis=1)
cls_hit = np.diag(cf_mat)
hit_ratio = np.array(
[hit / cnt if cnt else 0.0 for cnt, hit in zip(cls_cnt, cls_hit)])
if mode == 'accurate':
max_index = np.argsort(hit_ratio)[-k:][::-1]
max_value = hit_ratio[max_index]
results = list(zip(max_index, max_value))
else:
min_index = np.argsort(hit_ratio)[:k]
min_value = hit_ratio[min_index]
results = list(zip(min_index, min_value))
return results
def top_k_accuracy(scores, labels, topk=(1, )):
"""Calculate top k accuracy score.
Args:
scores (list[np.ndarray]): Prediction scores for each class.
labels (list[int]): Ground truth labels.
topk (tuple[int]): K value for top_k_accuracy. Default: (1, ).
Returns:
list[float]: Top k accuracy score for each k.
"""
res = []
labels = np.array(labels)[:, np.newaxis]
for k in topk:
max_k_preds = np.argsort(scores, axis=1)[:, -k:][:, ::-1]
match_array = np.logical_or.reduce(max_k_preds == labels, axis=1)
topk_acc_score = match_array.sum() / match_array.shape[0]
res.append(topk_acc_score)
return res
def mmit_mean_average_precision(scores, labels):
"""Mean average precision for multi-label recognition. Used for reporting
MMIT style mAP on Multi-Moments in Times. The difference is that this
method calculates average-precision for each sample and averages them among
samples.
Args:
scores (list[np.ndarray]): Prediction scores of different classes for
each sample.
labels (list[np.ndarray]): Ground truth many-hot vector for each
sample.
Returns:
np.float: The MMIT style mean average precision.
"""
results = []
for score, label in zip(scores, labels):
precision, recall, _ = binary_precision_recall_curve(score, label)
ap = -np.sum(np.diff(recall) * np.array(precision)[:-1])
results.append(ap)
return np.mean(results)
def mean_average_precision(scores, labels):
"""Mean average precision for multi-label recognition.
Args:
scores (list[np.ndarray]): Prediction scores of different classes for
each sample.
labels (list[np.ndarray]): Ground truth many-hot vector for each
sample.
Returns:
np.float: The mean average precision.
"""
results = []
scores = np.stack(scores).T
labels = np.stack(labels).T
for score, label in zip(scores, labels):
precision, recall, _ = binary_precision_recall_curve(score, label)
ap = -np.sum(np.diff(recall) * np.array(precision)[:-1])
results.append(ap)
results = [x for x in results if not np.isnan(x)]
if results == []:
return np.nan
return np.mean(results)
def binary_precision_recall_curve(y_score, y_true):
"""Calculate the binary precision recall curve at step thresholds.
Args:
y_score (np.ndarray): Prediction scores for each class.
Shape should be (num_classes, ).
y_true (np.ndarray): Ground truth many-hot vector.
Shape should be (num_classes, ).
Returns:
precision (np.ndarray): The precision of different thresholds.
recall (np.ndarray): The recall of different thresholds.
thresholds (np.ndarray): Different thresholds at which precision and
recall are tested.
"""
assert isinstance(y_score, np.ndarray)
assert isinstance(y_true, np.ndarray)
assert y_score.shape == y_true.shape
# make y_true a boolean vector
y_true = (y_true == 1)
# sort scores and corresponding truth values
desc_score_indices = np.argsort(y_score, kind='mergesort')[::-1]
y_score = y_score[desc_score_indices]
y_true = y_true[desc_score_indices]
# There may be ties in values, therefore find the `distinct_value_inds`
distinct_value_inds = np.where(np.diff(y_score))[0]
threshold_inds = np.r_[distinct_value_inds, y_true.size - 1]
# accumulate the true positives with decreasing threshold
tps = np.cumsum(y_true)[threshold_inds]
fps = 1 + threshold_inds - tps
thresholds = y_score[threshold_inds]
precision = tps / (tps + fps)
precision[np.isnan(precision)] = 0
recall = tps / tps[-1]
# stop when full recall attained
# and reverse the outputs so recall is decreasing
last_ind = tps.searchsorted(tps[-1])
sl = slice(last_ind, None, -1)
return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl]
def pairwise_temporal_iou(candidate_segments,
target_segments,
calculate_overlap_self=False):
"""Compute intersection over union between segments.
Args:
candidate_segments (np.ndarray): 1-dim/2-dim array in format
``[init, end]/[m x 2:=[init, end]]``.
target_segments (np.ndarray): 2-dim array in format
``[n x 2:=[init, end]]``.
calculate_overlap_self (bool): Whether to calculate overlap_self
(union / candidate_length) or not. Default: False.
Returns:
t_iou (np.ndarray): 1-dim array [n] /
2-dim array [n x m] with IoU ratio.
t_overlap_self (np.ndarray, optional): 1-dim array [n] /
2-dim array [n x m] with overlap_self, returns when
calculate_overlap_self is True.
"""
candidate_segments_ndim = candidate_segments.ndim
if target_segments.ndim != 2 or candidate_segments_ndim not in [1, 2]:
raise ValueError('Dimension of arguments is incorrect')
if candidate_segments_ndim == 1:
candidate_segments = candidate_segments[np.newaxis, :]
n, m = target_segments.shape[0], candidate_segments.shape[0]
t_iou = np.empty((n, m), dtype=np.float32)
if calculate_overlap_self:
t_overlap_self = np.empty((n, m), dtype=np.float32)
for i in range(m):
candidate_segment = candidate_segments[i, :]
tt1 = np.maximum(candidate_segment[0], target_segments[:, 0])
tt2 = np.minimum(candidate_segment[1], target_segments[:, 1])
# Intersection including Non-negative overlap score.
segments_intersection = (tt2 - tt1).clip(0)
# Segment union.
segments_union = ((target_segments[:, 1] - target_segments[:, 0]) +
(candidate_segment[1] - candidate_segment[0]) -
segments_intersection)
# Compute overlap as the ratio of the intersection
# over union of two segments.
t_iou[:, i] = (segments_intersection.astype(float) / segments_union)
if calculate_overlap_self:
candidate_length = candidate_segment[1] - candidate_segment[0]
t_overlap_self[:, i] = (
segments_intersection.astype(float) / candidate_length)
if candidate_segments_ndim == 1:
t_iou = np.squeeze(t_iou, axis=1)
if calculate_overlap_self:
if candidate_segments_ndim == 1:
t_overlap_self = np.squeeze(t_overlap_self, axis=1)
return t_iou, t_overlap_self
return t_iou
def average_recall_at_avg_proposals(ground_truth,
proposals,
total_num_proposals,
max_avg_proposals=None,
temporal_iou_thresholds=np.linspace(
0.5, 0.95, 10)):
"""Computes the average recall given an average number (percentile) of
proposals per video.
Args:
ground_truth (dict): Dict containing the ground truth instances.
proposals (dict): Dict containing the proposal instances.
total_num_proposals (int): Total number of proposals in the
proposal dict.
max_avg_proposals (int | None): Max number of proposals for one video.
Default: None.
temporal_iou_thresholds (np.ndarray): 1D array with temporal_iou
thresholds. Default: ``np.linspace(0.5, 0.95, 10)``.
Returns:
tuple([np.ndarray, np.ndarray, np.ndarray, float]):
(recall, average_recall, proposals_per_video, auc)
In recall, ``recall[i,j]`` is recall at i-th temporal_iou threshold
at the j-th average number (percentile) of average number of
proposals per video. The average_recall is recall averaged
over a list of temporal_iou threshold (1D array). This is
equivalent to ``recall.mean(axis=0)``. The ``proposals_per_video``
is the average number of proposals per video. The auc is the area
under ``AR@AN`` curve.
"""
total_num_videos = len(ground_truth)
if not max_avg_proposals:
max_avg_proposals = float(total_num_proposals) / total_num_videos
ratio = (max_avg_proposals * float(total_num_videos) / total_num_proposals)
# For each video, compute temporal_iou scores among the retrieved proposals
score_list = []
total_num_retrieved_proposals = 0
for video_id in ground_truth:
# Get proposals for this video.
proposals_video_id = proposals[video_id]
this_video_proposals = proposals_video_id[:, :2]
# Sort proposals by score.
sort_idx = proposals_video_id[:, 2].argsort()[::-1]
this_video_proposals = this_video_proposals[sort_idx, :].astype(
np.float32)
# Get ground-truth instances associated to this video.
ground_truth_video_id = ground_truth[video_id]
this_video_ground_truth = ground_truth_video_id[:, :2].astype(
np.float32)
if this_video_proposals.shape[0] == 0:
n = this_video_ground_truth.shape[0]
score_list.append(np.zeros((n, 1)))
continue
if this_video_proposals.ndim != 2:
this_video_proposals = np.expand_dims(this_video_proposals, axis=0)
if this_video_ground_truth.ndim != 2:
this_video_ground_truth = np.expand_dims(
this_video_ground_truth, axis=0)
num_retrieved_proposals = np.minimum(
int(this_video_proposals.shape[0] * ratio),
this_video_proposals.shape[0])
total_num_retrieved_proposals += num_retrieved_proposals
this_video_proposals = this_video_proposals[:
num_retrieved_proposals, :]
# Compute temporal_iou scores.
t_iou = pairwise_temporal_iou(this_video_proposals,
this_video_ground_truth)
score_list.append(t_iou)
# Given that the length of the videos is really varied, we
# compute the number of proposals in terms of a ratio of the total
# proposals retrieved, i.e. average recall at a percentage of proposals
# retrieved per video.
# Computes average recall.
pcn_list = np.arange(1, 101) / 100.0 * (
max_avg_proposals * float(total_num_videos) /
total_num_retrieved_proposals)
matches = np.empty((total_num_videos, pcn_list.shape[0]))
positives = np.empty(total_num_videos)
recall = np.empty((temporal_iou_thresholds.shape[0], pcn_list.shape[0]))
# Iterates over each temporal_iou threshold.
for ridx, temporal_iou in enumerate(temporal_iou_thresholds):
# Inspect positives retrieved per video at different
# number of proposals (percentage of the total retrieved).
for i, score in enumerate(score_list):
# Total positives per video.
positives[i] = score.shape[0]
# Find proposals that satisfies minimum temporal_iou threshold.
true_positives_temporal_iou = score >= temporal_iou
# Get number of proposals as a percentage of total retrieved.
pcn_proposals = np.minimum(
(score.shape[1] * pcn_list).astype(np.int), score.shape[1])
for j, num_retrieved_proposals in enumerate(pcn_proposals):
# Compute the number of matches
# for each percentage of the proposals
matches[i, j] = np.count_nonzero(
(true_positives_temporal_iou[:, :num_retrieved_proposals]
).sum(axis=1))
# Computes recall given the set of matches per video.
recall[ridx, :] = matches.sum(axis=0) / positives.sum()
# Recall is averaged.
avg_recall = recall.mean(axis=0)
# Get the average number of proposals per video.
proposals_per_video = pcn_list * (
float(total_num_retrieved_proposals) / total_num_videos)
# Get AUC
area_under_curve = np.trapz(avg_recall, proposals_per_video)
auc = 100. * float(area_under_curve) / proposals_per_video[-1]
return recall, avg_recall, proposals_per_video, auc
def get_weighted_score(score_list, coeff_list):
"""Get weighted score with given scores and coefficients.
Given n predictions by different classifier: [score_1, score_2, ...,
score_n] (score_list) and their coefficients: [coeff_1, coeff_2, ...,
coeff_n] (coeff_list), return weighted score: weighted_score =
score_1 * coeff_1 + score_2 * coeff_2 + ... + score_n * coeff_n
Args:
score_list (list[list[np.ndarray]]): List of list of scores, with shape
n(number of predictions) X num_samples X num_classes
coeff_list (list[float]): List of coefficients, with shape n.
Returns:
list[np.ndarray]: List of weighted scores.
"""
assert len(score_list) == len(coeff_list)
num_samples = len(score_list[0])
for i in range(1, len(score_list)):
assert len(score_list[i]) == num_samples
scores = np.array(score_list) # (num_coeff, num_samples, num_classes)
coeff = np.array(coeff_list) # (num_coeff, )
weighted_scores = list(np.dot(scores.T, coeff).T)
return weighted_scores
def softmax(x, dim=1):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x, axis=dim, keepdims=True))
return e_x / e_x.sum(axis=dim, keepdims=True)
def interpolated_precision_recall(precision, recall):
"""Interpolated AP - VOCdevkit from VOC 2011.
Args:
precision (np.ndarray): The precision of different thresholds.
recall (np.ndarray): The recall of different thresholds.
Returns:
float: Average precision score.
"""
mprecision = np.hstack([[0], precision, [0]])
mrecall = np.hstack([[0], recall, [1]])
for i in range(len(mprecision) - 1)[::-1]:
mprecision[i] = max(mprecision[i], mprecision[i + 1])
idx = np.where(mrecall[1::] != mrecall[0:-1])[0] + 1
ap = np.sum((mrecall[idx] - mrecall[idx - 1]) * mprecision[idx])
return ap
def average_precision_at_temporal_iou(ground_truth,
prediction,
temporal_iou_thresholds=(np.linspace(
0.5, 0.95, 10))):
"""Compute average precision (in detection task) between ground truth and
predicted data frames. If multiple predictions match the same predicted
segment, only the one with highest score is matched as true positive. This
code is greatly inspired by Pascal VOC devkit.
Args:
ground_truth (dict): Dict containing the ground truth instances.
Key: 'video_id'
Value (np.ndarray): 1D array of 't-start' and 't-end'.
prediction (np.ndarray): 2D array containing the information of
proposal instances, including 'video_id', 'class_id', 't-start',
't-end' and 'score'.
temporal_iou_thresholds (np.ndarray): 1D array with temporal_iou
thresholds. Default: ``np.linspace(0.5, 0.95, 10)``.
Returns:
np.ndarray: 1D array of average precision score.
"""
ap = np.zeros(len(temporal_iou_thresholds), dtype=np.float32)
if len(prediction) < 1:
return ap
num_gts = 0.
lock_gt = dict()
for key in ground_truth:
lock_gt[key] = np.ones(
(len(temporal_iou_thresholds), len(ground_truth[key]))) * -1
num_gts += len(ground_truth[key])
# Sort predictions by decreasing score order.
prediction = np.array(prediction)
scores = prediction[:, 4].astype(float)
sort_idx = np.argsort(scores)[::-1]
prediction = prediction[sort_idx]
# Initialize true positive and false positive vectors.
tp = np.zeros((len(temporal_iou_thresholds), len(prediction)),
dtype=np.int32)
fp = np.zeros((len(temporal_iou_thresholds), len(prediction)),
dtype=np.int32)
# Assigning true positive to truly grount truth instances.
for idx, this_pred in enumerate(prediction):
# Check if there is at least one ground truth in the video.
if this_pred[0] in ground_truth:
this_gt = np.array(ground_truth[this_pred[0]], dtype=float)
else:
fp[:, idx] = 1
continue
t_iou = pairwise_temporal_iou(this_pred[2:4].astype(float), this_gt)
# We would like to retrieve the predictions with highest t_iou score.
t_iou_sorted_idx = t_iou.argsort()[::-1]
for t_idx, t_iou_threshold in enumerate(temporal_iou_thresholds):
for jdx in t_iou_sorted_idx:
if t_iou[jdx] < t_iou_threshold:
fp[t_idx, idx] = 1
break
if lock_gt[this_pred[0]][t_idx, jdx] >= 0:
continue
# Assign as true positive after the filters above.
tp[t_idx, idx] = 1
lock_gt[this_pred[0]][t_idx, jdx] = idx
break
if fp[t_idx, idx] == 0 and tp[t_idx, idx] == 0:
fp[t_idx, idx] = 1
tp_cumsum = np.cumsum(tp, axis=1).astype(np.float32)
fp_cumsum = np.cumsum(fp, axis=1).astype(np.float32)
recall_cumsum = tp_cumsum / num_gts
precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum)
for t_idx in range(len(temporal_iou_thresholds)):
ap[t_idx] = interpolated_precision_recall(precision_cumsum[t_idx, :],
recall_cumsum[t_idx, :])
return ap