[6d389a]: / inference / total_video_inference.py

Download this file

276 lines (216 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import argparse
import os
import os.path as osp
import json
import time
from tqdm import tqdm
from PIL import Image
import numpy as np
import torch
import torchvision.datasets as datasets
from torchvision import transforms
import torch.utils.data as data
import mmcv
from mmaction.datasets.pipelines import Compose
from mmaction.models import build_model
# Multi GPU
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.parallel import collate
def parse_args():
parser = argparse.ArgumentParser(description='workflow recognition')
parser.add_argument("--local_rank", type=int, help="Local rank. Necessary for using the torch.distributed.launch utility.")
parser.add_argument('--data_path', default='.', help='dataset prefix')
parser.add_argument('--output_prefix', default='', help='output prefix')
parser.add_argument('--task_type', default='active_bleeding', help='active_bleeding')
parser.add_argument('--data_list', default=None, help='video list of the dataset, the format should be')
parser.add_argument(
'--frame_interval',
type=int,
default=30,
help='the sampling frequency of frame in the untrimed video')
parser.add_argument(
'--temporal_stride',
type=int,
default=30,
help='clip in frame interval')
parser.add_argument('--ckpt', default='.pth', help='checkpoint for feature extraction')
parser.add_argument(
'--batch_size', type=int, default=256, help='input batch size')
parser.add_argument(
'--numModel', type=int, default=1, help='number of the model')
parser.add_argument(
'--config_file', type=str, default='ckpt/phase.py', help='config_file')
parser.add_argument(
'--num_class', type=int, default=2, help='active bleeding : 2')
parser.add_argument(
'--kfold', type=int, default=1, help='cross validation')
parser.add_argument(
'--multigpu', type=int, default=1, help='cross validation')
args = parser.parse_args()
return args
class mmaction_inference():
def __init__(self, args):
self.args = args
self.config = mmcv.Config.fromfile(args.config_file)
self.ckpt = args.ckpt
self.num_class = args.num_class
self.kfold = args.kfold
self.data_path = args.data_path
self.datalist = open(args.data_list).readlines()
self.datalist = [x.strip() for x in self.datalist]
# multi gpu
self.device = torch.device("cuda:{}".format(args.local_rank) if torch.cuda.is_available() else "cpu")
self.data_set()
self.model_set()
def data_set(self):
# Data Setting
self.img_norm_cfg = self.config['img_norm_cfg']
self.img_norm_cfg['mean'] = [i / 255.0 for i in self.img_norm_cfg['mean']]
self.img_norm_cfg['std'] = [i / 255.0 for i in self.img_norm_cfg['std']]
self.clip_len = self.config['data']['test']['pipeline'][0]['clip_len'] # clip len
self.transform = transforms.Compose([
transforms.Scale(224),
transforms.CenterCrop(224),
# transforms.PILToTensor(),
transforms.ToTensor(),
transforms.Normalize(mean=self.img_norm_cfg['mean'], std=self.img_norm_cfg['std']),
# transforms.ToPILImage(),
])
kfold = self.kfold
if kfold == 1:
test_patient = [3, 4, 6, 13, 17, 18, 22, 116, 208, 303]
elif kfold == 2:
test_patient = [1, 7, 10, 19, 56, 74, 100, 117, 203, 304]
elif kfold == 3:
test_patient = [5, 48, 76, 94, 202, 204, 206, 209, 301, 305]
def model_set(self):
# Model Setting
model = build_model(self.config['model'])
state_dict = torch.load(self.ckpt)['state_dict']
model.load_state_dict(state_dict)
# self.model = model.cuda()
if self.args.multigpu > 1:
self.model = MMDataParallel(
model.cuda(0), device_ids=[self.args.local_rank], output_device=self.args.local_rank)
self.model = self.model.to(self.device)
else:
self.model = model.cuda()
def forward(self):
prog_bar = mmcv.ProgressBar(len(self.datalist))
probability = dict()
for videoID in self.datalist:
videoID = videoID.strip()
frame_dir = os.path.join(self.data_path, videoID)
output_dir = os.path.join(self.args.output_prefix, videoID)
if not osp.exists(output_dir):
os.system(f'mkdir -p {output_dir}')
start = time.time()
print('\nstart', videoID)
inference_time_output_file = self.args.task_type + '_time.txt'
inference_time_output_file = osp.join(output_dir, inference_time_output_file)
output_file = self.args.task_type + '.json'
output_file = osp.join(output_dir, output_file)
# first frame
framelist = sorted(os.listdir(frame_dir))[::self.args.frame_interval]
probability[videoID] = np.zeros((len(framelist), self.num_class))
first_dataset = GastricDataset(data_path=frame_dir, datalist=framelist, temporal_stride=self.args.temporal_stride, windows=self.clip_len, transform=self.transform)
# first_loader = torch.utils.data.DataLoader(first_dataset, batch_size=self.args.batch_size, shuffle=False, num_workers=8, pin_memory=True)
# middle frame
framelist = sorted(os.listdir(frame_dir))[::self.args.frame_interval]
framelist = [framelist[0]] * ((self.clip_len - 1) // 2) + framelist[:-1* ((self.clip_len - 1) // 2)]
middle_dataset = GastricDataset(data_path=frame_dir, datalist=framelist, temporal_stride=self.args.temporal_stride, windows=self.clip_len, transform=self.transform)
# middle_loader = torch.utils.data.DataLoader(middle_dataset, batch_size=self.args.batch_size, shuffle=False, num_workers=8, pin_memory=True)
# last frame
framelist = sorted(os.listdir(frame_dir))[::self.args.frame_interval]
framelist = [framelist[0]] * (self.clip_len - 1) + framelist[:-1* (self.clip_len - 1)]
last_dataset = GastricDataset(data_path=frame_dir, datalist=framelist, temporal_stride=self.args.temporal_stride, windows=self.clip_len, transform=self.transform)
# last_loader = torch.utils.data.DataLoader(last_dataset, batch_size=self.args.batch_size, shuffle=False, num_workers=8, pin_memory=True)
dataset = ConcatDataset(first_dataset, middle_dataset, last_dataset)
if self.args.multigpu > 1:
rank, world_size = get_dist_info()
sampler = DistributedSampler(
dataset, world_size, rank, shuffle=False, seed=None)
else:
sampler=None
data_loader = torch.utils.data.DataLoader(dataset,sampler=sampler,
batch_size=self.args.batch_size, shuffle=False, num_workers=6, pin_memory=True)
with torch.no_grad():
self.model.eval()
idx = 0
for batch_idx, (images1,images2,images3) in enumerate(tqdm(data_loader)):#zip(first_loader, middle_loader, last_loader), total=len(first_loader))):
# images1, images2, images3 = images1.cuda(), images2.cuda(), images3.cuda()
images = torch.cat((images1.unsqueeze(1), images2.unsqueeze(1), images3.unsqueeze(1)), dim=1).cuda()
prob = self.model(images, return_loss=False, infer_3d=True) #+ self.model(images2, return_loss=False, infer_3d=True) + self.model(images3, return_loss=False, infer_3d=True)
probability[videoID][idx:idx+images1.size(0)] = prob.squeeze().cpu().numpy()
idx += images1.size(0)
results = self.save2json(probability[videoID])
with open(output_file, "w") as json_file:
json.dump(results, json_file)
end = time.time()
with open(inference_time_output_file, 'w') as f:
f.write(str(end - start))
prog_bar.update()
def save2json(self, prob):
result = dict()
result['labels'] = {0 : 'Normal', 1: 'Actvie Bleeding'}
result['prediction'] = dict()
predictions = []
for idx in range(len(prob)):
predictions.append(str(np.argmax(prob[idx])))
result['result'] = predictions
probabilitys = []
for idx in range(len(prob)):
probabilitys.append(list(prob[idx]))
result['prob'] = probabilitys
result['frameInterval'] = str(self.args.frame_interval)
return result
def main():
args = parse_args()
inference = mmaction_inference(args)
inference.forward()
# enumerate Untrimmed videos, extract feature from each of them
class ConcatDataset(data.Dataset):
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, i):
return tuple(d[i] for d in self.datasets)
def __len__(self):
return min(len(d) for d in self.datasets)
class GastricDataset(data.Dataset):
"Characterizes a dataset for PyTorch"
def __init__(self, data_path, datalist, temporal_stride, windows, transform=None):
"Initialization"
self.data_path = data_path
self.transform = transform
self.temporal_stride = temporal_stride
self.windows = windows
self.datalist = datalist
def __len__(self):
"Denotes the total number of samples"
return len(self.datalist)
def read_images(self, data):
X = []
ts = self.temporal_stride
frameNum = int(data[-10:-4])
iamge = None
for i in range(0, self.windows):
image_path = os.path.join(self.data_path, 'frame' + str((i*ts) \
+ frameNum).zfill(10) + '.jpg')
if os.path.exists(image_path):
image =Image.open(image_path)
if self.transform is not None:
image = self.transform(image)
X.append(image)
X = torch.stack(X, dim=0)
return X
def __getitem__(self, index):
"Generates one sample of data"
# Select sample
data = self.datalist[index]
# Load data
X = self.read_images(data) # (input) spatial images
# BatchSize, Channel, Temporal, Width, Height
X = X.permute(1, 0, 2, 3)
return X
if __name__ == '__main__':
main()