[6d389a]: / docs_zh_CN / stat.py

Download this file

174 lines (131 with data), 4.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
import functools as func
import glob
import re
from os.path import basename, splitext
import numpy as np
import titlecase
def anchor(name):
return re.sub(r'-+', '-', re.sub(r'[^a-zA-Z0-9]', '-',
name.strip().lower())).strip('-')
# Count algorithms
files = sorted(glob.glob('*_models.md'))
stats = []
for f in files:
with open(f, 'r') as content_file:
content = content_file.read()
# title
title = content.split('\n')[0].replace('#', '')
# skip IMAGE and ABSTRACT tags
content = [
x for x in content.split('\n')
if 'IMAGE' not in x and 'ABSTRACT' not in x
]
content = '\n'.join(content)
# count papers
papers = set(
(papertype, titlecase.titlecase(paper.lower().strip()))
for (papertype, paper) in re.findall(
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}',
content, re.DOTALL))
# paper links
revcontent = '\n'.join(list(reversed(content.splitlines())))
paperlinks = {}
for _, p in papers:
print(p)
q = p.replace('\\', '\\\\').replace('?', '\\?')
paperlinks[p] = ' '.join(
(f'[->]({splitext(basename(f))[0]}.html#{anchor(paperlink)})'
for paperlink in re.findall(
rf'\btitle\s*=\s*{{\s*{q}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n',
revcontent, re.DOTALL | re.IGNORECASE)))
print(' ', paperlinks[p])
paperlist = '\n'.join(
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers))
# count configs
configs = set(x.lower().strip()
for x in re.findall(r'https.*configs/.*\.py', content))
# count ckpts
ckpts = set(x.lower().strip()
for x in re.findall(r'https://download.*\.pth', content)
if 'mmaction' in x)
statsmsg = f"""
## [{title}]({f})
* 模型权重文件数量: {len(ckpts)}
* 配置文件数量: {len(configs)}
* 论文数量: {len(papers)}
{paperlist}
"""
stats.append((papers, configs, ckpts, statsmsg))
allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _, _ in stats])
allconfigs = func.reduce(lambda a, b: a.union(b), [c for _, c, _, _ in stats])
allckpts = func.reduce(lambda a, b: a.union(b), [c for _, _, c, _ in stats])
msglist = '\n'.join(x for _, _, _, x in stats)
papertypes, papercounts = np.unique([t for t, _ in allpapers],
return_counts=True)
countstr = '\n'.join(
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
modelzoo = f"""
# 总览
* 模型权重文件数量: {len(allckpts)}
* 配置文件数量: {len(allconfigs)}
* 论文数量: {len(allpapers)}
{countstr}
有关受支持的数据集,可参见 [数据集总览](datasets.md)。
{msglist}
"""
with open('modelzoo.md', 'w') as f:
f.write(modelzoo)
# Count datasets
files = ['supported_datasets.md']
datastats = []
for f in files:
with open(f, 'r') as content_file:
content = content_file.read()
# title
title = content.split('\n')[0].replace('#', '')
# count papers
papers = set(
(papertype, titlecase.titlecase(paper.lower().strip()))
for (papertype, paper) in re.findall(
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}',
content, re.DOTALL))
# paper links
revcontent = '\n'.join(list(reversed(content.splitlines())))
paperlinks = {}
for _, p in papers:
print(p)
q = p.replace('\\', '\\\\').replace('?', '\\?')
paperlinks[p] = ', '.join(
(f'[{p.strip()} ->]({splitext(basename(f))[0]}.html#{anchor(p)})'
for p in re.findall(
rf'\btitle\s*=\s*{{\s*{q}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n',
revcontent, re.DOTALL | re.IGNORECASE)))
print(' ', paperlinks[p])
paperlist = '\n'.join(
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers))
statsmsg = f"""
## [{title}]({f})
* 论文数量: {len(papers)}
{paperlist}
"""
datastats.append((papers, configs, ckpts, statsmsg))
alldatapapers = func.reduce(lambda a, b: a.union(b),
[p for p, _, _, _ in datastats])
# Summarize
msglist = '\n'.join(x for _, _, _, x in stats)
datamsglist = '\n'.join(x for _, _, _, x in datastats)
papertypes, papercounts = np.unique([t for t, _ in alldatapapers],
return_counts=True)
countstr = '\n'.join(
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
modelzoo = f"""
# 总览
* 论文数量: {len(alldatapapers)}
{countstr}
有关受支持的视频理解算法,可参见 [模型总览](modelzoo.md)。
{datamsglist}
"""
with open('datasets.md', 'w') as f:
f.write(modelzoo)