|
a |
|
b/docs/stat.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# Copyright (c) OpenMMLab. All rights reserved. |
|
|
3 |
import functools as func |
|
|
4 |
import glob |
|
|
5 |
import re |
|
|
6 |
from os.path import basename, splitext |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
import titlecase |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
def anchor(name): |
|
|
13 |
return re.sub(r'-+', '-', re.sub(r'[^a-zA-Z0-9]', '-', |
|
|
14 |
name.strip().lower())).strip('-') |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
# Count algorithms |
|
|
18 |
|
|
|
19 |
files = sorted(glob.glob('*_models.md')) |
|
|
20 |
# files = sorted(glob.glob('docs/*_models.md')) |
|
|
21 |
|
|
|
22 |
stats = [] |
|
|
23 |
|
|
|
24 |
for f in files: |
|
|
25 |
with open(f, 'r') as content_file: |
|
|
26 |
content = content_file.read() |
|
|
27 |
|
|
|
28 |
# title |
|
|
29 |
title = content.split('\n')[0].replace('#', '') |
|
|
30 |
|
|
|
31 |
# skip IMAGE and ABSTRACT tags |
|
|
32 |
content = [ |
|
|
33 |
x for x in content.split('\n') |
|
|
34 |
if 'IMAGE' not in x and 'ABSTRACT' not in x |
|
|
35 |
] |
|
|
36 |
content = '\n'.join(content) |
|
|
37 |
|
|
|
38 |
# count papers |
|
|
39 |
papers = set( |
|
|
40 |
(papertype, titlecase.titlecase(paper.lower().strip())) |
|
|
41 |
for (papertype, paper) in re.findall( |
|
|
42 |
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}', |
|
|
43 |
content, re.DOTALL)) |
|
|
44 |
# paper links |
|
|
45 |
revcontent = '\n'.join(list(reversed(content.splitlines()))) |
|
|
46 |
paperlinks = {} |
|
|
47 |
for _, p in papers: |
|
|
48 |
print(p) |
|
|
49 |
q = p.replace('\\', '\\\\').replace('?', '\\?') |
|
|
50 |
paperlinks[p] = ' '.join( |
|
|
51 |
(f'[->]({splitext(basename(f))[0]}.html#{anchor(paperlink)})' |
|
|
52 |
for paperlink in re.findall( |
|
|
53 |
rf'\btitle\s*=\s*{{\s*{q}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n', |
|
|
54 |
revcontent, re.DOTALL | re.IGNORECASE))) |
|
|
55 |
print(' ', paperlinks[p]) |
|
|
56 |
paperlist = '\n'.join( |
|
|
57 |
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers)) |
|
|
58 |
# count configs |
|
|
59 |
configs = set(x.lower().strip() |
|
|
60 |
for x in re.findall(r'https.*configs/.*\.py', content)) |
|
|
61 |
|
|
|
62 |
# count ckpts |
|
|
63 |
ckpts = set(x.lower().strip() |
|
|
64 |
for x in re.findall(r'https://download.*\.pth', content) |
|
|
65 |
if 'mmaction' in x) |
|
|
66 |
|
|
|
67 |
statsmsg = f""" |
|
|
68 |
## [{title}]({f}) |
|
|
69 |
|
|
|
70 |
* Number of checkpoints: {len(ckpts)} |
|
|
71 |
* Number of configs: {len(configs)} |
|
|
72 |
* Number of papers: {len(papers)} |
|
|
73 |
{paperlist} |
|
|
74 |
|
|
|
75 |
""" |
|
|
76 |
|
|
|
77 |
stats.append((papers, configs, ckpts, statsmsg)) |
|
|
78 |
|
|
|
79 |
allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _, _ in stats]) |
|
|
80 |
allconfigs = func.reduce(lambda a, b: a.union(b), [c for _, c, _, _ in stats]) |
|
|
81 |
allckpts = func.reduce(lambda a, b: a.union(b), [c for _, _, c, _ in stats]) |
|
|
82 |
msglist = '\n'.join(x for _, _, _, x in stats) |
|
|
83 |
|
|
|
84 |
papertypes, papercounts = np.unique([t for t, _ in allpapers], |
|
|
85 |
return_counts=True) |
|
|
86 |
countstr = '\n'.join( |
|
|
87 |
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) |
|
|
88 |
|
|
|
89 |
modelzoo = f""" |
|
|
90 |
# Overview |
|
|
91 |
|
|
|
92 |
* Number of checkpoints: {len(allckpts)} |
|
|
93 |
* Number of configs: {len(allconfigs)} |
|
|
94 |
* Number of papers: {len(allpapers)} |
|
|
95 |
{countstr} |
|
|
96 |
|
|
|
97 |
For supported datasets, see [datasets overview](datasets.md). |
|
|
98 |
|
|
|
99 |
{msglist} |
|
|
100 |
""" |
|
|
101 |
|
|
|
102 |
with open('modelzoo.md', 'w') as f: |
|
|
103 |
f.write(modelzoo) |
|
|
104 |
|
|
|
105 |
# Count datasets |
|
|
106 |
|
|
|
107 |
files = ['supported_datasets.md'] |
|
|
108 |
# files = sorted(glob.glob('docs/tasks/*.md')) |
|
|
109 |
|
|
|
110 |
datastats = [] |
|
|
111 |
|
|
|
112 |
for f in files: |
|
|
113 |
with open(f, 'r') as content_file: |
|
|
114 |
content = content_file.read() |
|
|
115 |
|
|
|
116 |
# title |
|
|
117 |
title = content.split('\n')[0].replace('#', '') |
|
|
118 |
|
|
|
119 |
# count papers |
|
|
120 |
papers = set( |
|
|
121 |
(papertype, titlecase.titlecase(paper.lower().strip())) |
|
|
122 |
for (papertype, paper) in re.findall( |
|
|
123 |
r'<!--\s*\[([A-Z]*?)\]\s*-->\s*\n.*?\btitle\s*=\s*{(.*?)}', |
|
|
124 |
content, re.DOTALL)) |
|
|
125 |
# paper links |
|
|
126 |
revcontent = '\n'.join(list(reversed(content.splitlines()))) |
|
|
127 |
paperlinks = {} |
|
|
128 |
for _, p in papers: |
|
|
129 |
print(p) |
|
|
130 |
q = p.replace('\\', '\\\\').replace('?', '\\?') |
|
|
131 |
paperlinks[p] = ', '.join( |
|
|
132 |
(f'[{p.strip()} ->]({splitext(basename(f))[0]}.html#{anchor(p)})' |
|
|
133 |
for p in re.findall( |
|
|
134 |
rf'\btitle\s*=\s*{{\s*{q}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n', |
|
|
135 |
revcontent, re.DOTALL | re.IGNORECASE))) |
|
|
136 |
print(' ', paperlinks[p]) |
|
|
137 |
paperlist = '\n'.join( |
|
|
138 |
sorted(f' - [{t}] {x} ({paperlinks[x]})' for t, x in papers)) |
|
|
139 |
|
|
|
140 |
statsmsg = f""" |
|
|
141 |
## [{title}]({f}) |
|
|
142 |
|
|
|
143 |
* Number of papers: {len(papers)} |
|
|
144 |
{paperlist} |
|
|
145 |
|
|
|
146 |
""" |
|
|
147 |
|
|
|
148 |
datastats.append((papers, configs, ckpts, statsmsg)) |
|
|
149 |
|
|
|
150 |
alldatapapers = func.reduce(lambda a, b: a.union(b), |
|
|
151 |
[p for p, _, _, _ in datastats]) |
|
|
152 |
|
|
|
153 |
# Summarize |
|
|
154 |
|
|
|
155 |
msglist = '\n'.join(x for _, _, _, x in stats) |
|
|
156 |
datamsglist = '\n'.join(x for _, _, _, x in datastats) |
|
|
157 |
papertypes, papercounts = np.unique([t for t, _ in alldatapapers], |
|
|
158 |
return_counts=True) |
|
|
159 |
countstr = '\n'.join( |
|
|
160 |
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) |
|
|
161 |
|
|
|
162 |
modelzoo = f""" |
|
|
163 |
# Overview |
|
|
164 |
|
|
|
165 |
* Number of papers: {len(alldatapapers)} |
|
|
166 |
{countstr} |
|
|
167 |
|
|
|
168 |
For supported action algorithms, see [modelzoo overview](modelzoo.md). |
|
|
169 |
|
|
|
170 |
{datamsglist} |
|
|
171 |
""" |
|
|
172 |
|
|
|
173 |
with open('datasets.md', 'w') as f: |
|
|
174 |
f.write(modelzoo) |