--- a
+++ b/configs/recognition/tanet/metafile.yml
@@ -0,0 +1,80 @@
+Collections:
+- Name: TANet
+  README: configs/recognition/tanet/README.md
+  Paper:
+    URL: https://arxiv.org/abs/2005.06803
+    Title: "TAM: Temporal Adaptive Module for Video Recognition"
+Models:
+- Config: configs/recognition/tanet/tanet_r50_dense_1x1x8_100e_kinetics400_rgb.py
+  In Collection: TANet
+  Metadata:
+    Architecture: TANet
+    Batch Size: 8
+    Epochs: 100
+    FLOPs: 43065983104
+    Parameters: 25590320
+    Pretrained: ImageNet
+    Resolution: short-side 320
+    Training Data: Kinetics-400
+    Training Resources: 8 GPUs
+  Modality: RGB
+  Name: tanet_r50_dense_1x1x8_100e_kinetics400_rgb
+  Results:
+  - Dataset: Kinetics-400
+    Metrics:
+      Top 1 Accuracy: 76.28
+      Top 5 Accuracy: 92.6
+    Task: Action Recognition
+  Training Json Log: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_dense_1x1x8_100e_kinetics400_rgb/tanet_r50_dense_1x1x8_100e_kinetics400_rgb_20210219.json
+  Training Log: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_dense_1x1x8_100e_kinetics400_rgb/tanet_r50_dense_1x1x8_100e_kinetics400_rgb_20210219.log
+  Weights: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_dense_1x1x8_100e_kinetics400_rgb/tanet_r50_dense_1x1x8_100e_kinetics400_rgb_20210219-032c8e94.pth
+- Config: configs/recognition/tanet/tanet_r50_1x1x8_50e_sthv1_rgb.py
+  In Collection: TANet
+  Metadata:
+    Architecture: TANet
+    Batch Size: 8
+    Epochs: 50
+    FLOPs: 32972787840
+    Parameters: 25127246
+    Pretrained: ImageNet
+    Resolution: height 100
+    Training Data: SthV1
+    Training Resources: 8 GPUs
+  Modality: RGB
+  Name: tanet_r50_1x1x8_50e_sthv1_rgb
+  Results:
+  - Dataset: SthV1
+    Metrics:
+      Top 1 Accuracy: 49.58
+      Top 1 Accuracy (efficient): 47.34
+      Top 5 Accuracy: 77.31
+      Top 5 Accuracy (efficient): 75.72
+    Task: Action Recognition
+  Training Json Log: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_1x1x8_50e_sthv1_rgb/20210606_205006.log.json
+  Training Log: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_1x1x8_50e_sthv1_rgb/20210606_205006.log
+  Weights: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_1x1x8_50e_sthv1_rgb/tanet_r50_1x1x8_50e_sthv1_rgb_20210630-f4a48609.pth
+- Config: configs/recognition/tanet/tanet_r50_1x1x16_50e_sthv1_rgb.py
+  In Collection: TANet
+  Metadata:
+    Architecture: TANet
+    Batch Size: 8
+    Epochs: 50
+    FLOPs: 65946542336
+    Parameters: 25134670
+    Pretrained: ImageNet
+    Resolution: height 100
+    Training Data: SthV1
+    gpus: 4
+  Modality: RGB
+  Name: tanet_r50_1x1x16_50e_sthv1_rgb
+  Results:
+  - Dataset: SthV1
+    Metrics:
+      Top 1 Accuracy: 50.91
+      Top 1 Accuracy (efficient): 49.05
+      Top 5 Accuracy: 79.13
+      Top 5 Accuracy (efficient): 77.90
+    Task: Action Recognition
+  Training Json Log: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_1x1x16_50e_sthv1_rgb/tanet_r50_1x1x16_50e_sthv1_rgb.json
+  Training Log: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_1x1x16_50e_sthv1_rgb/tanet_r50_1x1x16_50e_sthv1_rgb.log
+  Weights: https://download.openmmlab.com/mmaction/recognition/tanet/tanet_r50_1x1x16_50e_sthv1_rgb/tanet_r50_1x1x16_50e_sthv1_rgb_20211202-370c2128.pth