Switch to side-by-side view

--- a
+++ b/configs/recognition/slowonly/README.md
@@ -0,0 +1,157 @@
+# SlowOnly
+
+## Abstract
+
+<!-- [ABSTRACT] -->
+
+We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA.
+
+<!-- [IMAGE] -->
+<div align=center>
+<img src="https://user-images.githubusercontent.com/34324155/143044111-94676f64-7ba8-4081-9011-f8054bed7030.png" width="800"/>
+</div>
+
+## Citation
+
+<!-- [ALGORITHM] -->
+
+```BibTeX
+@inproceedings{feichtenhofer2019slowfast,
+  title={Slowfast networks for video recognition},
+  author={Feichtenhofer, Christoph and Fan, Haoqi and Malik, Jitendra and He, Kaiming},
+  booktitle={Proceedings of the IEEE international conference on computer vision},
+  pages={6202--6211},
+  year={2019}
+}
+```
+
+## Model Zoo
+
+### Kinetics-400
+
+|config | resolution | gpus | backbone |pretrain| top1 acc| top5 acc | inference_time(video/s) | gpu_mem(M) | ckpt | log| json|
+|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
+|[slowonly_r50_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py)|short-side 256|8x4| ResNet50 | None |72.76|90.51|x|3168|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb_20200820-bea7701f.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb/20200817_001411.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb/20200817_001411.log.json)|
+|[slowonly_r50_video_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r50_video_4x16x1_256e_kinetics400_rgb.py)|short-side 320|8x2| ResNet50 | None |72.90|90.82|x|8472|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_320p_4x16x1_256e_kinetics400_rgb/slowonly_r50_video_320p_4x16x1_256e_kinetics400_rgb_20201014-c9cdc656.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_320p_4x16x1_256e_kinetics400_rgb/slowonly_r50_video_320p_4x16x1_256e_kinetics400_rgb_20201014.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_320p_4x16x1_256e_kinetics400_rgb/slowonly_r50_video_320p_4x16x1_256e_kinetics400_rgb_20201014.json)|
+|[slowonly_r50_8x8x1_256e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_rgb.py) |short-side 256|8x4| ResNet50 | None |74.42|91.49|x|5820|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_8x8x1_256e_kinetics400_rgb/slowonly_r50_256p_8x8x1_256e_kinetics400_rgb_20200820-75851a7d.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_8x8x1_256e_kinetics400_rgb/20200817_003320.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_8x8x1_256e_kinetics400_rgb/20200817_003320.log.json)|
+|[slowonly_r50_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py)|short-side 320|8x2| ResNet50 | None |73.02|90.77|4.0 (40x3 frames)|3168|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/slowonly_r50_4x16x1_256e_kinetics400_rgb_20200704-a69556c6.pth)| [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/so_4x16.log)| [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/slowonly_r50_4x16_73.02_90.77.log.json)|
+|[slowonly_r50_8x8x1_256e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_rgb.py) |short-side 320|8x3| ResNet50 | None |74.93|91.92|2.3 (80x3 frames)|5820| [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_rgb/slowonly_r50_8x8x1_256e_kinetics400_rgb_20200703-a79c555a.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_rgb/so_8x8.log)| [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_rgb/slowonly_r50_8x8_74.93_91.92.log.json)|
+|[slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb.py)|short-side 320|8x2| ResNet50 | ImageNet |73.39|91.12|x|3168|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb_20200912-1e8fc736.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb_20200912.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb/slowonly_imagenet_pretrained_r50_4x16x1_150e_kinetics400_rgb_20200912.json)|
+|[slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb.py) |short-side 320|8x4| ResNet50 | ImageNet |75.55|92.04|x|5820|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb_20200912-3f9ce182.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb_20200912.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb/slowonly_imagenet_pretrained_r50_8x8x1_150e_kinetics400_rgb_20200912.json)|
+|[slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb.py) | short-side 320 | 8x2 | ResNet50 | ImageNet | 74.54 | 91.73 | x | 4435 |[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb/slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb_20210308-0d6e5a69.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb/20210305_152630.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_4x16x1_150e_kinetics400_rgb/20210305_152630.log.json)|
+|[slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb.py) | short-side 320 | 8x4 | ResNet50 | ImageNet | 76.07 | 92.42 | x | 8895 |[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb/slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb_20210308-e8dd9e82.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb/20210308_212250.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_nl_embedded_gaussian_r50_8x8x1_150e_kinetics400_rgb/20210308_212250.log.json)|
+|[slowonly_r50_4x16x1_256e_kinetics400_flow](/configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_flow.py)|short-side 320|8x2| ResNet50  | ImageNet |61.79|83.62|x|8450| [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_flow/slowonly_r50_4x16x1_256e_kinetics400_flow_20200704-decb8568.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_flow/slowonly_r50_4x16x1_256e_kinetics400_flow_61.8_83.6.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_flow/slowonly_r50_4x16x1_256e_kinetics400_flow_61.8_83.6.log.json)|
+|[slowonly_r50_8x8x1_196e_kinetics400_flow](/configs/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_flow.py) |short-side 320|8x4| ResNet50 | ImageNet |65.76|86.25|x|8455| [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_flow/slowonly_r50_8x8x1_256e_kinetics400_flow_20200704-6b384243.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_flow/slowonly_r50_8x8x1_196e_kinetics400_flow_65.8_86.3.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_8x8x1_256e_kinetics400_flow/slowonly_r50_8x8x1_196e_kinetics400_flow_65.8_86.3.log.json)|
+
+### Kinetics-400 Data Benchmark
+
+In data benchmark, we compare two different data preprocessing methods: (1) Resize video to 340x256, (2) Resize the short edge of video to 320px, (3) Resize the short edge of video to 256px.
+
+| config                                                       |   resolution   | gpus | backbone | Input | pretrain | top1 acc | top5 acc |  testing protocol  |                             ckpt                             |                             log                              |                             json                             |
+| :----------------------------------------------------------- | :------------: | :--: | :------: | :---: | :------: | :------: | :------: | :----------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/data_benchmark/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb.py) |    340x256     | 8x2  | ResNet50 | 4x16  |   None   |  71.61   |  90.05   | 10 clips x 3 crops | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/data_benchmark/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb_20200803-dadca1a3.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/data_benchmark/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb_20200803.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/data_benchmark/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb/slowonly_r50_randomresizedcrop_340x256_4x16x1_256e_kinetics400_rgb_20200803.json) |
+| [slowonly_r50_randomresizedcrop_320p_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/data_benchmark/slowonly_r50_randomresizedcrop_320p_4x16x1_256e_kinetics400_rgb.py) | short-side 320 | 8x2  | ResNet50 | 4x16  |   None   |  73.02   |  90.77   | 10 clips x 3 crops | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/slowonly_r50_4x16x1_256e_kinetics400_rgb_20200704-a69556c6.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/so_4x16.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/slowonly_r50_4x16_73.02_90.77.log.json) |
+| [slowonly_r50_randomresizedcrop_256p_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/data_benchmark/slowonly_r50_randomresizedcrop_256p_4x16x1_256e_kinetics400_rgb.py) | short-side 256 | 8x4  | ResNet50 | 4x16  |   None   |  72.76   |  90.51   | 10 clips x 3 crops | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb_20200820-bea7701f.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb/20200817_001411.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_256p_4x16x1_256e_kinetics400_rgb/20200817_001411.log.json) |
+
+### Kinetics-400 OmniSource Experiments
+
+|                            config                            |   resolution   | backbone  | pretrain |   w. OmniSource    | top1 acc | top5 acc |                             ckpt                             |                             log                              |                             json                             |
+| :----------------------------------------------------------: | :------------: | :-------: | :------: | :----------------: | :------: | :------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowonly_r50_4x16x1_256e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py) | short-side 320 | ResNet50  |   None   |        :x:         |   73.0   |   90.8   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/slowonly_r50_4x16x1_256e_kinetics400_rgb_20200704-a69556c6.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/so_4x16.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb/slowonly_r50_4x16_73.02_90.77.log.json) |
+|                              x                               |       x        | ResNet50  |   None   | :heavy_check_mark: |   76.8   |   92.5   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/omni/slowonly_r50_omni_4x16x1_kinetics400_rgb_20200926-51b1f7ea.pth) |                              x                               |                              x                               |
+| [slowonly_r101_8x8x1_196e_kinetics400_rgb](/configs/recognition/slowonly/slowonly_r101_8x8x1_196e_kinetics400_rgb.py) |       x        | ResNet101 |   None   |        :x:         |   76.5   |   92.7   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/omni/slowonly_r101_without_omni_8x8x1_kinetics400_rgb_20200926-0c730aef.pth) |                              x                               |                              x                               |
+|                              x                               |       x        | ResNet101 |   None   | :heavy_check_mark: |   80.4   |   94.4   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/omni/slowonly_r101_omni_8x8x1_kinetics400_rgb_20200926-b5dbb701.pth) |                              x                               |                              x                               |
+
+### Kinetics-600
+
+| config                                                       |   resolution   | gpus | backbone | pretrain | top1 acc | top5 acc |                             ckpt                             |                             log                              |                             json                             |
+| :----------------------------------------------------------- | :------------: | :--: | :------: | :------: | :------: | :------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowonly_r50_video_8x8x1_256e_kinetics600_rgb](/configs/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics600_rgb.py) | short-side 256 | 8x4  | ResNet50 |   None   |   77.5   |   93.7   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics600_rgb/slowonly_r50_video_8x8x1_256e_kinetics600_rgb_20201015-81e5153e.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics600_rgb/slowonly_r50_video_8x8x1_256e_kinetics600_rgb_20201015.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics600_rgb/slowonly_r50_video_8x8x1_256e_kinetics600_rgb_20201015.json) |
+
+### Kinetics-700
+
+| config                                                       |   resolution   | gpus | backbone | pretrain | top1 acc | top5 acc |                             ckpt                             |                             log                              |                             json                             |
+| :----------------------------------------------------------- | :------------: | :--: | :------: | :------: | :------: | :------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowonly_r50_video_8x8x1_256e_kinetics700_rgb](/configs/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics700_rgb.py) | short-side 256 | 8x4  | ResNet50 |   None   |   65.0   |   86.1   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics700_rgb/slowonly_r50_video_8x8x1_256e_kinetics700_rgb_20201015-9250f662.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics700_rgb/slowonly_r50_video_8x8x1_256e_kinetics700_rgb_20201015.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_r50_video_8x8x1_256e_kinetics700_rgb/slowonly_r50_video_8x8x1_256e_kinetics700_rgb_20201015.json) |
+
+### GYM99
+
+| config                                                       |   resolution   | gpus | backbone | pretrain | top1 acc | mean class acc |                             ckpt                             |                             log                              |                             json                             |
+| :----------------------------------------------------------- | :------------: | :--: | :------: | :------: | :------: | :------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb.py) | short-side 256 | 8x2  | ResNet50 | ImageNet |   79.3   |      70.2      | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb_20201111-a9c34b54.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb_20201111.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb/slowonly_imagenet_pretrained_r50_4x16x1_120e_gym99_rgb_20201111.json) |
+| [slowonly_k400_pretrained_r50_4x16x1_120e_gym99_flow](/configs/recognition/slowonly/slowonly_k400_pretrained_r50_4x16x1_120e_gym99_flow.py) | short-side 256 | 8x2  | ResNet50 | Kinetics |   80.3   |      71.0      | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow/slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow_20201111-66ecdb3c.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow/slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow_20201111.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow/slowonly_kinetics_pretrained_r50_4x16x1_120e_gym99_flow_20201111.json) |
+| 1: 1 Fusion                                                  |                |      |          |          |   83.7   |      74.8      |                                                              |                                                              |                                                              |
+
+### Jester
+
+| config                                                       | resolution | gpus | backbone | pretrain | top1 acc |                             ckpt                             |                             log                              |                             json                             |
+| :----------------------------------------------------------- | :--------: | :--: | :------: | :------: | :------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb.py) | height 100 |  8   | ResNet50 | ImageNet |   97.2   | [ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb-b56a5389.pth) | [log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb.log) | [json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb/slowonly_imagenet_pretrained_r50_8x8x1_64e_jester_rgb.json) |
+
+### HMDB51
+
+|config | gpus | backbone | pretrain | top1 acc| top5 acc | gpu_mem(M) | ckpt | log| json|
+|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
+|[slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb.py)|8|ResNet50|ImageNet|37.52|71.50|5812|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb/slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb_20210630-16faeb6a.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb/20210605_185256.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_hmdb51_rgb/20210605_185256.log.json)|
+|[slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb](/configs/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb.py)|8|ResNet50|Kinetics400|65.95|91.05|5812|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb/slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb_20210630-cee5f725.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb/20210606_010153.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_hmdb51_rgb/20210606_010153.log.json)|
+
+### UCF101
+
+|config | gpus | backbone | pretrain | top1 acc| top5 acc | gpu_mem(M) | ckpt | log| json|
+|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
+|[slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb.py)|8|ResNet50|ImageNet|71.35|89.35|5812|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb/slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb_20210630-181e1661.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb/20210605_213503.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_ucf101_rgb/20210605_213503.log.json)|
+|[slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb](/configs/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb.py)|8|ResNet50|Kinetics400|92.78|99.42|5812|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb/slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb_20210630-ee8c850f.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb/20210606_010231.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_k400_pretrained_r50_8x4x1_40e_ucf101_rgb/20210606_010231.log.json)|
+
+### Something-Something V1
+
+|config | gpus | backbone | pretrain | top1 acc| top5 acc | gpu_mem(M) | ckpt | log| json|
+|:--|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
+|[slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb](/configs/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb.py)|8|ResNet50|ImageNet|47.76|77.49|7759|[ckpt](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb_20211202-d034ff12.pth)|[log](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb.log)|[json](https://download.openmmlab.com/mmaction/recognition/slowonly/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb/slowonly_imagenet_pretrained_r50_8x4x1_64e_sthv1_rgb.json)|
+
+:::{note}
+
+1. The **gpus** indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide are used for 8 gpus as default.
+   According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU,
+   e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.
+2. The **inference_time** is got by this [benchmark script](/tools/analysis/benchmark.py), where we use the sampling frames strategy of the test setting and only care about the model inference time, not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.
+3. The validation set of Kinetics400 we used consists of 19796 videos. These videos are available at [Kinetics400-Validation](https://mycuhk-my.sharepoint.com/:u:/g/personal/1155136485_link_cuhk_edu_hk/EbXw2WX94J1Hunyt3MWNDJUBz-nHvQYhO9pvKqm6g39PMA?e=a9QldB). The corresponding [data list](https://download.openmmlab.com/mmaction/dataset/k400_val/kinetics_val_list.txt) (each line is of the format 'video_id, num_frames, label_index') and the [label map](https://download.openmmlab.com/mmaction/dataset/k400_val/kinetics_class2ind.txt) are also available.
+
+:::
+
+For more details on data preparation, you can refer to corresponding parts in [Data Preparation](/docs/data_preparation.md).
+
+## Train
+
+You can use the following command to train a model.
+
+```shell
+python tools/train.py ${CONFIG_FILE} [optional arguments]
+```
+
+Example: train SlowOnly model on Kinetics-400 dataset in a deterministic option with periodic validation.
+
+```shell
+python tools/train.py configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py \
+    --work-dir work_dirs/slowonly_r50_4x16x1_256e_kinetics400_rgb \
+    --validate --seed 0 --deterministic
+```
+
+For more details, you can refer to **Training setting** part in [getting_started](/docs/getting_started.md#training-setting).
+
+## Test
+
+You can use the following command to test a model.
+
+```shell
+python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
+```
+
+Example: test SlowOnly model on Kinetics-400 dataset and dump the result to a json file.
+
+```shell
+python tools/test.py configs/recognition/slowonly/slowonly_r50_4x16x1_256e_kinetics400_rgb.py \
+    checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
+    --out result.json --average-clips=prob
+```
+
+For more details, you can refer to **Test a dataset** part in [getting_started](/docs/getting_started.md#test-a-dataset).