Switch to side-by-side view

--- a
+++ b/configs/detection/acrn/README_zh-CN.md
@@ -0,0 +1,81 @@
+# ACRN
+
+## 简介
+
+<!-- [DATASET] -->
+
+```BibTeX
+@inproceedings{gu2018ava,
+  title={Ava: A video dataset of spatio-temporally localized atomic visual actions},
+  author={Gu, Chunhui and Sun, Chen and Ross, David A and Vondrick, Carl and Pantofaru, Caroline and Li, Yeqing and Vijayanarasimhan, Sudheendra and Toderici, George and Ricco, Susanna and Sukthankar, Rahul and others},
+  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
+  pages={6047--6056},
+  year={2018}
+}
+```
+
+<!-- [ALGORITHM] -->
+
+```BibTeX
+@inproceedings{sun2018actor,
+  title={Actor-centric relation network},
+  author={Sun, Chen and Shrivastava, Abhinav and Vondrick, Carl and Murphy, Kevin and Sukthankar, Rahul and Schmid, Cordelia},
+  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
+  pages={318--334},
+  year={2018}
+}
+```
+
+## 模型库
+
+### AVA2.1
+
+|                            配置文件                             | 模态 |  预训练  | 主干网络 | 输入 | GPU 数量 | mAP  |                             log                              |                             json                             |                             ckpt                             |
+| :----------------------------------------------------------: | :------: | :----------: | :------: | :---: | :--: | :--: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb](/configs/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb.py) |   RGB    | Kinetics-400 | ResNet50 | 32x2  |  8   | 27.1 | [log](https://download.openmmlab.com/mmaction/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb.log) | [json](https://download.openmmlab.com/mmaction/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb.json) | [ckpt](https://download.openmmlab.com/mmaction/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava_rgb-49b07bf2.pth) |
+
+### AVA2.2
+
+|                            配置文件                             | 模态 |  预训练  | 主干网络 | 输入 | GPU 数量 | mAP  |                             log                              |                             json                             |                             ckpt                             |
+| :----------------------------------------------------------: | :------: | :----------: | :------: | :---: | :--: | :--: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
+| [slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb](/configs/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb.py) |   RGB    | Kinetics-400 | ResNet50 | 32x2  |  8   | 27.8 | [log](https://download.openmmlab.com/mmaction/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb.log) | [json](https://download.openmmlab.com/mmaction/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb.json) | [ckpt](https://download.openmmlab.com/mmaction/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb-2be32625.pth) |
+
+- 注:
+
+1. 这里的 **GPU 数量** 指的是得到模型权重文件对应的 GPU 个数。默认地,MMAction2 所提供的配置文件对应使用 8 块 GPU 进行训练的情况。
+   依据 [线性缩放规则](https://arxiv.org/abs/1706.02677),当用户使用不同数量的 GPU 或者每块 GPU 处理不同视频个数时,需要根据批大小等比例地调节学习率。
+   如,lr=0.01 对应 4 GPUs x 2 video/gpu,以及 lr=0.08 对应 16 GPUs x 4 video/gpu。
+
+对于数据集准备的细节,用户可参考 [数据准备](/docs_zh_CN/data_preparation.md)。
+
+## 如何训练
+
+用户可以使用以下指令进行模型训练。
+
+```shell
+python tools/train.py ${CONFIG_FILE} [optional arguments]
+```
+
+例如:在 AVA 数据集上训练 ACRN 辅以 SlowFast 主干网络,并定期验证。
+
+```shell
+python tools/train.py configs/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb.py --validate
+```
+
+更多训练细节,可参考 [基础教程](/docs_zh_CN/getting_started.md#训练配置) 中的 **训练配置** 部分。
+
+## 如何测试
+
+用户可以使用以下指令进行模型测试。
+
+```shell
+python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]
+```
+
+例如:在 AVA 上测试 ACRN 辅以 SlowFast 主干网络,并将结果存为 csv 文件。
+
+```shell
+python tools/test.py configs/detection/acrn/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb.py checkpoints/SOME_CHECKPOINT.pth --eval mAP --out results.csv
+```
+
+更多测试细节,可参考 [基础教程](/docs_zh_CN/getting_started.md#测试某个数据集) 中的 **测试某个数据集** 部分。