|
a |
|
b/SemanticSegmentation.m |
|
|
1 |
%% This code train and test semantic segmentation of Capsule endoscopy images |
|
|
2 |
% required MATLAB 2018 |
|
|
3 |
% Developer: Tonmoy Ghosh (tghosh@crimson.ua.edu) |
|
|
4 |
|
|
|
5 |
% Load Images |
|
|
6 |
% Use |imageDatastore| to load images. The |imageDatastore| enables you |
|
|
7 |
% to efficiently load a large collection of images on disk. |
|
|
8 |
%% |
|
|
9 |
clear; clc; close all; |
|
|
10 |
%imgDir = fullfile('bleeding images') |
|
|
11 |
imgDir = '/Users/tonmoyghosh/OneDrive - The University of Alabama/Paper with Code/Semantic Segmentation Based Bleeding Zone Detection/Dataset/bleeding'; |
|
|
12 |
imds = imageDatastore(imgDir); |
|
|
13 |
%% |
|
|
14 |
% Display one of the images. |
|
|
15 |
|
|
|
16 |
I = readimage(imds, 1); |
|
|
17 |
I = histeq(I); |
|
|
18 |
figure |
|
|
19 |
imshow(I) |
|
|
20 |
%% Load Pixel-Labeled Images |
|
|
21 |
classes = [ |
|
|
22 |
"Bleeding" |
|
|
23 |
"Non_Bleeding" |
|
|
24 |
"Background" |
|
|
25 |
]; |
|
|
26 |
labelIDs = PixelLabelIDs(); |
|
|
27 |
%% |
|
|
28 |
% Use the classes and label IDs to create the |pixelLabelDatastore|: |
|
|
29 |
|
|
|
30 |
%labelDir = fullfile('labels'); |
|
|
31 |
labelDir = '/Users/tonmoyghosh/OneDrive - The University of Alabama/Paper with Code/Semantic Segmentation Based Bleeding Zone Detection/Dataset/labels'; |
|
|
32 |
pxds = pixelLabelDatastore(labelDir,classes,labelIDs); |
|
|
33 |
% Read and display one of the pixel-labeled images by overlaying it on top |
|
|
34 |
% of an image. |
|
|
35 |
|
|
|
36 |
C = readimage(pxds, 1); |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
cmap = CEColorMap; |
|
|
40 |
B = labeloverlay(I,C,'ColorMap',cmap); |
|
|
41 |
|
|
|
42 |
figure |
|
|
43 |
imshow(B) |
|
|
44 |
pixelLabelColorbar(cmap,classes); |
|
|
45 |
|
|
|
46 |
%% |
|
|
47 |
%analize the data statistics |
|
|
48 |
tbl = countEachLabel(pxds) |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
%Visualize the pixel counts by class. |
|
|
52 |
|
|
|
53 |
frequency = tbl.PixelCount/sum(tbl.PixelCount); |
|
|
54 |
|
|
|
55 |
figure |
|
|
56 |
bar(1:numel(classes),frequency) |
|
|
57 |
xticks(1:numel(classes)) |
|
|
58 |
xticklabels(tbl.Name) |
|
|
59 |
xtickangle(45) |
|
|
60 |
ylabel('Frequency') |
|
|
61 |
|
|
|
62 |
%% |
|
|
63 |
%Resize CamVid Data |
|
|
64 |
imageFolder = fullfile('imagesReszed',filesep); |
|
|
65 |
imds = resizeCEImages(imds,imageFolder); |
|
|
66 |
|
|
|
67 |
labelFolder = fullfile('labelsResized',filesep); |
|
|
68 |
pxds = resizeCEPixelLabels(pxds,labelFolder); |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
%% |
|
|
73 |
%Prepare Training and Test Sets |
|
|
74 |
[imdsTrain, imdsTest, pxdsTrain, pxdsTest] = partitionCEData(imds,pxds); |
|
|
75 |
|
|
|
76 |
numTrainingImages = numel(imdsTrain.Files) |
|
|
77 |
numTestingImages = numel(imdsTest.Files) |
|
|
78 |
|
|
|
79 |
%Create the network |
|
|
80 |
imageSize = [256 256 3]; |
|
|
81 |
numClasses = numel(classes); |
|
|
82 |
%lgraph = segnetLayers(imageSize,numClasses,'vgg16'); |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
%% |
|
|
86 |
|
|
|
87 |
%Balance Classes Using Class Weighting |
|
|
88 |
% imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount; |
|
|
89 |
% classWeights = median(imageFreq) ./ imageFreq |
|
|
90 |
% |
|
|
91 |
% pxLayer = pixelClassificationLayer('Name','labels','ClassNames', tbl.Name, 'ClassWeights', classWeights) |
|
|
92 |
% |
|
|
93 |
% |
|
|
94 |
% lgraph = removeLayers(lgraph, 'pixelLabels'); |
|
|
95 |
% lgraph = addLayers(lgraph, pxLayer); |
|
|
96 |
% lgraph = connectLayers(lgraph, 'softmax' ,'labels'); |
|
|
97 |
|
|
|
98 |
% load saved network architecture |
|
|
99 |
load lgraph |
|
|
100 |
|
|
|
101 |
%Select Training Options |
|
|
102 |
options = trainingOptions('sgdm', ... |
|
|
103 |
'Momentum', 0.9, ... |
|
|
104 |
'InitialLearnRate', 1e-3, ... |
|
|
105 |
'L2Regularization', 0.0005, ... |
|
|
106 |
'MaxEpochs', 100, ... |
|
|
107 |
'MiniBatchSize', 3, ... |
|
|
108 |
'Shuffle', 'every-epoch', ... |
|
|
109 |
'VerboseFrequency', 2); |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
%% |
|
|
114 |
|
|
|
115 |
%Data Augmentation |
|
|
116 |
augmenter = imageDataAugmenter('RandXReflection',true,... |
|
|
117 |
'RandXTranslation', [-10 10], 'RandYTranslation',[-10 10]); |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
%Start Training |
|
|
121 |
datasource = pixelLabelImageSource(imdsTrain,pxdsTrain, ... |
|
|
122 |
'DataAugmentation',augmenter); |
|
|
123 |
|
|
|
124 |
doTraining = false; |
|
|
125 |
if doTraining |
|
|
126 |
[net, info] = trainNetwork(datasource,lgraph,options); |
|
|
127 |
else |
|
|
128 |
data = load('CEtrainedSegNet.mat'); |
|
|
129 |
net = data.net; |
|
|
130 |
end |
|
|
131 |
|
|
|
132 |
%% |
|
|
133 |
%Test Network on One Image |
|
|
134 |
tic |
|
|
135 |
I = read(imdsTest); |
|
|
136 |
C = semanticseg(I, net); |
|
|
137 |
|
|
|
138 |
%Display the results. |
|
|
139 |
B = labeloverlay(I, C, 'Colormap', cmap, 'Transparency',0.4); |
|
|
140 |
figure |
|
|
141 |
imshow(B) |
|
|
142 |
pixelLabelColorbar(cmap, classes); |
|
|
143 |
|
|
|
144 |
expectedResult = read(pxdsTest); |
|
|
145 |
actual = uint8(C); |
|
|
146 |
expected = uint8(expectedResult{1}); |
|
|
147 |
imshowpair(actual, expected) |
|
|
148 |
|
|
|
149 |
iou = jaccard(C, expectedResult{1}); |
|
|
150 |
table(classes,iou) |
|
|
151 |
|
|
|
152 |
%Evaluate Trained Network |
|
|
153 |
pxdsResults = semanticseg(imdsTest,net,'WriteLocation',tempdir,'Verbose',false); |
|
|
154 |
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTest,'Verbose',false); |
|
|
155 |
|
|
|
156 |
toc |