|
a |
|
b/SA_MIL_training.ipynb |
|
|
1 |
{ |
|
|
2 |
"nbformat": 4, |
|
|
3 |
"nbformat_minor": 0, |
|
|
4 |
"metadata": { |
|
|
5 |
"colab": { |
|
|
6 |
"provenance": [] |
|
|
7 |
}, |
|
|
8 |
"kernelspec": { |
|
|
9 |
"name": "python3", |
|
|
10 |
"display_name": "Python 3" |
|
|
11 |
}, |
|
|
12 |
"language_info": { |
|
|
13 |
"name": "python" |
|
|
14 |
} |
|
|
15 |
}, |
|
|
16 |
"cells": [ |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": 1, |
|
|
20 |
"metadata": { |
|
|
21 |
"id": "FauGw-yKqt0k", |
|
|
22 |
"colab": { |
|
|
23 |
"base_uri": "https://localhost:8080/" |
|
|
24 |
}, |
|
|
25 |
"outputId": "e03c49ff-a6fa-44a6-9df9-c9f392824821" |
|
|
26 |
}, |
|
|
27 |
"outputs": [ |
|
|
28 |
{ |
|
|
29 |
"output_type": "stream", |
|
|
30 |
"name": "stdout", |
|
|
31 |
"text": [ |
|
|
32 |
"Num GPUs Available: 0\n" |
|
|
33 |
] |
|
|
34 |
} |
|
|
35 |
], |
|
|
36 |
"source": [ |
|
|
37 |
"####################\n", |
|
|
38 |
"### LIBRARIES ####\n", |
|
|
39 |
"####################\n", |
|
|
40 |
"\n", |
|
|
41 |
"import numpy as np\n", |
|
|
42 |
"import warnings\n", |
|
|
43 |
"import pandas as pd\n", |
|
|
44 |
"import os\n", |
|
|
45 |
"import matplotlib.pyplot as plt\n", |
|
|
46 |
"import cv2\n", |
|
|
47 |
"import networkx as nx\n", |
|
|
48 |
"\n", |
|
|
49 |
"# Remove TensorFlow warnings\n", |
|
|
50 |
"os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n", |
|
|
51 |
"\n", |
|
|
52 |
"# Import TensorFlow and Keras for neural network operations\n", |
|
|
53 |
"import tensorflow as tf\n", |
|
|
54 |
"from tensorflow import keras\n", |
|
|
55 |
"from tensorflow.keras import layers\n", |
|
|
56 |
"from tensorflow.keras.callbacks import EarlyStopping\n", |
|
|
57 |
"from tensorflow.keras.losses import Loss\n", |
|
|
58 |
"from tensorflow.python.framework.ops import disable_eager_execution\n", |
|
|
59 |
"disable_eager_execution()\n", |
|
|
60 |
"\n", |
|
|
61 |
"# Set the default float type for TensorFlow to \"float32\"\n", |
|
|
62 |
"tf.keras.backend.set_floatx(\"float32\")\n", |
|
|
63 |
"\n", |
|
|
64 |
"# Print the number of available GPUs\n", |
|
|
65 |
"print(\"Num GPUs Available: \", len(tf.config.list_physical_devices('GPU')))" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"source": [ |
|
|
71 |
"####################\n", |
|
|
72 |
"### DATA LOADING ###\n", |
|
|
73 |
"####################\n", |
|
|
74 |
"\n", |
|
|
75 |
"print('Starting preprocessing of bags')\n", |
|
|
76 |
"\n", |
|
|
77 |
"# Define directories for image files, have training images from three folders.\n", |
|
|
78 |
"train_images_dir1 = './Data/train1/'\n", |
|
|
79 |
"train_images_dir2 = './Data/train2/'\n", |
|
|
80 |
"train_images_dir3 = './Data/train3/'\n", |
|
|
81 |
"\n", |
|
|
82 |
"# Get lists of files in the directories\n", |
|
|
83 |
"train_files1 = set(os.listdir(train_images_dir1))\n", |
|
|
84 |
"train_files2 = set(os.listdir(train_images_dir2))\n", |
|
|
85 |
"train_files3 = set(os.listdir(train_images_dir3))\n", |
|
|
86 |
"\n", |
|
|
87 |
"# Read bag data from CSV files\n", |
|
|
88 |
"train_bags = pd.read_csv(\"./tables/Training_examples.csv\")\n", |
|
|
89 |
"\n", |
|
|
90 |
"# Create a mapping of train files to their respective directories\n", |
|
|
91 |
"dirs_ = [train_images_dir1, train_images_dir2, train_images_dir3]\n", |
|
|
92 |
"train_files_loc = {\n", |
|
|
93 |
" k: dirs_[\n", |
|
|
94 |
" (k[:-4]+'.npy' in train_files1) * 1 +\n", |
|
|
95 |
" (k[:-4]+'.npy' in train_files2) * 2 +\n", |
|
|
96 |
" (k[:-4]+'.npy' in train_files3) * 3 - 1\n", |
|
|
97 |
" ]\n", |
|
|
98 |
" for k in train_bags.instance_name\n", |
|
|
99 |
"}\n", |
|
|
100 |
"\n", |
|
|
101 |
"# Create lists of DCM files for train files in each directory\n", |
|
|
102 |
"train_files1_dcm = [k[:-4] + '.dcm' for k in train_files1]\n", |
|
|
103 |
"train_files2_dcm = [k[:-4] + '.dcm' for k in train_files2]\n", |
|
|
104 |
"train_files3_dcm = [k[:-4] + '.dcm' for k in train_files3]\n", |
|
|
105 |
"\n", |
|
|
106 |
"# Filter train bags based on DCM file existence\n", |
|
|
107 |
"train_bags = train_bags[\n", |
|
|
108 |
" train_bags.instance_name.isin(train_files1_dcm) |\n", |
|
|
109 |
" train_bags.instance_name.isin(train_files2_dcm) |\n", |
|
|
110 |
" train_bags.instance_name.isin(train_files3_dcm)\n", |
|
|
111 |
"]" |
|
|
112 |
], |
|
|
113 |
"metadata": { |
|
|
114 |
"id": "sOoozeNfqxrz" |
|
|
115 |
}, |
|
|
116 |
"execution_count": null, |
|
|
117 |
"outputs": [] |
|
|
118 |
}, |
|
|
119 |
{ |
|
|
120 |
"cell_type": "code", |
|
|
121 |
"source": [ |
|
|
122 |
"##########################\n", |
|
|
123 |
"### BAGS PREPROCESSING ###\n", |
|
|
124 |
"##########################\n", |
|
|
125 |
"\n", |
|
|
126 |
"# Set the desired bag size\n", |
|
|
127 |
"bag_size = 57\n", |
|
|
128 |
"\n", |
|
|
129 |
"# Create additional train bags to reach the desired bag size\n", |
|
|
130 |
"added_train_bags = pd.DataFrame()\n", |
|
|
131 |
"for idx in train_bags.bag_name.unique():\n", |
|
|
132 |
" bags = train_bags[train_bags.bag_name==idx].copy()\n", |
|
|
133 |
" num_add = bag_size - len(bags.instance_name)\n", |
|
|
134 |
"\n", |
|
|
135 |
" aux = bags.iloc[0].copy()\n", |
|
|
136 |
" aux.instance_label = 0\n", |
|
|
137 |
" aux.instance_name = 'all_zeros'\n", |
|
|
138 |
" for i in range(num_add):\n", |
|
|
139 |
" added_train_bags = added_train_bags.append(aux)\n", |
|
|
140 |
"\n", |
|
|
141 |
"train_bags = train_bags.append(added_train_bags)\n", |
|
|
142 |
"\n", |
|
|
143 |
"# Convert bags data to dictionaries for optimization\n", |
|
|
144 |
"train_bags_dic = {k: list(train_bags[train_bags.bag_name==k].instance_name) for k in train_bags.bag_name.unique()}" |
|
|
145 |
], |
|
|
146 |
"metadata": { |
|
|
147 |
"id": "1amWUWZBqx0x" |
|
|
148 |
}, |
|
|
149 |
"execution_count": null, |
|
|
150 |
"outputs": [] |
|
|
151 |
}, |
|
|
152 |
{ |
|
|
153 |
"cell_type": "code", |
|
|
154 |
"source": [ |
|
|
155 |
"####################\n", |
|
|
156 |
"### DATALOADER ###\n", |
|
|
157 |
"####################\n", |
|
|
158 |
"\n", |
|
|
159 |
"dim=(512,512,bag_size)\n", |
|
|
160 |
"class DataGeneratorMIL(keras.utils.Sequence):\n", |
|
|
161 |
" 'Generates data for Keras'\n", |
|
|
162 |
"\n", |
|
|
163 |
" def __init__(self, list_IDs, labels=None, batch_size=256, dim=(512,512,512), n_channels=3,\n", |
|
|
164 |
" n_classes=2, shuffle=True, is_train=True):\n", |
|
|
165 |
" 'Initialization'\n", |
|
|
166 |
" self.dim = dim\n", |
|
|
167 |
" self.batch_size = batch_size\n", |
|
|
168 |
" self.labels = labels\n", |
|
|
169 |
" self.is_train = (labels is not None) and is_train\n", |
|
|
170 |
" self.list_IDs = list_IDs\n", |
|
|
171 |
" self.n_channels = n_channels\n", |
|
|
172 |
" self.n_classes = n_classes\n", |
|
|
173 |
" self.shuffle = shuffle\n", |
|
|
174 |
" self.on_epoch_end()\n", |
|
|
175 |
"\n", |
|
|
176 |
" def __len__(self):\n", |
|
|
177 |
" 'Denotes the number of batches per epoch'\n", |
|
|
178 |
" return int(np.floor(len(self.list_IDs) / self.batch_size))\n", |
|
|
179 |
"\n", |
|
|
180 |
" def __getitem__(self, index):\n", |
|
|
181 |
" 'Generate one batch of data'\n", |
|
|
182 |
" # Generate indexes of the batch\n", |
|
|
183 |
" list_IDs_temp = self.list_IDs[index*self.batch_size:(index+1)*self.batch_size]\n", |
|
|
184 |
"\n", |
|
|
185 |
" X = self.__data_generation(list_IDs_temp)\n", |
|
|
186 |
" # Generate data\n", |
|
|
187 |
" if self.is_train:\n", |
|
|
188 |
" y = self.labels[index*self.batch_size:(index+1)*self.batch_size]\n", |
|
|
189 |
" return np.array(X), np.array(y, dtype='float64')\n", |
|
|
190 |
" else:\n", |
|
|
191 |
" return np.array(X)\n", |
|
|
192 |
"\n", |
|
|
193 |
" def on_epoch_end(self):\n", |
|
|
194 |
" 'Updates indexes after each epoch'\n", |
|
|
195 |
" self.indexes = np.arange(len(self.list_IDs))\n", |
|
|
196 |
" if self.shuffle == True:\n", |
|
|
197 |
" np.random.shuffle(self.indexes)\n", |
|
|
198 |
"\n", |
|
|
199 |
" def __data_generation(self, list_IDs_temp):\n", |
|
|
200 |
" 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)\n", |
|
|
201 |
" # Initialization\n", |
|
|
202 |
" X = np.empty((self.batch_size, *self.dim, self.n_channels))\n", |
|
|
203 |
"\n", |
|
|
204 |
" # Generate data\n", |
|
|
205 |
" for i, ID in enumerate(list_IDs_temp):\n", |
|
|
206 |
" # Store sample\n", |
|
|
207 |
" if self.is_train:\n", |
|
|
208 |
" ids = train_bags_dic[ID]\n", |
|
|
209 |
" else:\n", |
|
|
210 |
" ids = test_bags_dic[ID]\n", |
|
|
211 |
" imgs = []\n", |
|
|
212 |
" for idx in ids:\n", |
|
|
213 |
" if idx == 'all_zeros':\n", |
|
|
214 |
" img = np.zeros((self.dim[0], self.dim[1], self.n_channels))\n", |
|
|
215 |
" imgs.append(img)\n", |
|
|
216 |
" continue\n", |
|
|
217 |
" if self.is_train:\n", |
|
|
218 |
" _dir = train_files_loc[idx]\n", |
|
|
219 |
" img = np.load(_dir + idx[:-4] + '.npy')\n", |
|
|
220 |
" img = cv2.resize(img, (self.dim[1], self.dim[0]))\n", |
|
|
221 |
" imgs.append(img)\n", |
|
|
222 |
" else:\n", |
|
|
223 |
" img = np.load(test_images_dir + idx[:-4] + '.npy')\n", |
|
|
224 |
" img = cv2.resize(img, (self.dim[1], self.dim[0]))\n", |
|
|
225 |
" imgs.append(img)\n", |
|
|
226 |
" X[i,] = np.transpose(imgs, [1,2,0,3])\n", |
|
|
227 |
"\n", |
|
|
228 |
" return X" |
|
|
229 |
], |
|
|
230 |
"metadata": { |
|
|
231 |
"id": "CkWPfMEjqx1z" |
|
|
232 |
}, |
|
|
233 |
"execution_count": null, |
|
|
234 |
"outputs": [] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"cell_type": "code", |
|
|
238 |
"source": [ |
|
|
239 |
"########################\n", |
|
|
240 |
"### TRAIN/TEST SPLIT ###\n", |
|
|
241 |
"########################\n", |
|
|
242 |
"\n", |
|
|
243 |
"from sklearn.model_selection import train_test_split\n", |
|
|
244 |
"\n", |
|
|
245 |
"N = len(train_bags.bag_name.unique())\n", |
|
|
246 |
"bags = train_bags.groupby('bag_name').max()\n", |
|
|
247 |
"\n", |
|
|
248 |
"X_train, X_val, y_train, y_val = train_test_split(np.array(bags.index)[:], bags.bag_label[:],\n", |
|
|
249 |
" test_size=0.20, random_state=0,\n", |
|
|
250 |
" stratify=bags.bag_label[:])\n", |
|
|
251 |
"\n", |
|
|
252 |
"batch_size = 4\n", |
|
|
253 |
"\n", |
|
|
254 |
"# Creating the train dataset using DataGeneratorMIL\n", |
|
|
255 |
"train_dataset = DataGeneratorMIL(X_train, y_train, batch_size=batch_size, dim=dim)\n", |
|
|
256 |
"\n", |
|
|
257 |
"# Creating the validation dataset using DataGeneratorMIL\n", |
|
|
258 |
"val_dataset = DataGeneratorMIL(X_val, y_val, batch_size=batch_size, dim=dim, is_augment=False)" |
|
|
259 |
], |
|
|
260 |
"metadata": { |
|
|
261 |
"id": "MUdsNAz-qx4P" |
|
|
262 |
}, |
|
|
263 |
"execution_count": null, |
|
|
264 |
"outputs": [] |
|
|
265 |
}, |
|
|
266 |
{ |
|
|
267 |
"cell_type": "code", |
|
|
268 |
"source": [ |
|
|
269 |
"########################\n", |
|
|
270 |
"### SA-Loss ###\n", |
|
|
271 |
"########################\n", |
|
|
272 |
"class smoothMIL(tf.keras.losses.Loss):\n", |
|
|
273 |
" def __init__(self, att_weights, alpha, S_k):\n", |
|
|
274 |
" super(smoothMIL, self).__init__()\n", |
|
|
275 |
" self.att_weights = att_weights\n", |
|
|
276 |
" self.alpha = alpha\n", |
|
|
277 |
" self.S_k = S_k\n", |
|
|
278 |
"\n", |
|
|
279 |
" def compute_Laplacian(self, bag_size):\n", |
|
|
280 |
" G = nx.Graph()\n", |
|
|
281 |
" for e in range(bag_size - 1):\n", |
|
|
282 |
" G.add_edge(e + 1, e + 2)\n", |
|
|
283 |
" degree_matrix = np.diag(list(dict(G.degree()).values())) + np.eye(bag_size)\n", |
|
|
284 |
" adjacency_matrix = nx.adjacency_matrix(G).toarray()\n", |
|
|
285 |
" L = degree_matrix - adjacency_matrix\n", |
|
|
286 |
" return L\n", |
|
|
287 |
"\n", |
|
|
288 |
" def call(self, y_true, y_pred):\n", |
|
|
289 |
" bce = tf.keras.losses.BinaryCrossentropy()\n", |
|
|
290 |
"\n", |
|
|
291 |
" loss1 = bce(y_true, y_pred)\n", |
|
|
292 |
" L = self.compute_Laplacian(bag_size)\n", |
|
|
293 |
"\n", |
|
|
294 |
" if self.S_k == 1:\n", |
|
|
295 |
" VV = tf.linalg.matmul(self.att_weights, L)\n", |
|
|
296 |
" loss2 = tf.linalg.matmul(VV, tf.transpose(self.att_weights, (0, 2, 1)))\n", |
|
|
297 |
" elif self.S_k == 2:\n", |
|
|
298 |
" VV = tf.linalg.matmul(self.att_weights, L)\n", |
|
|
299 |
" VV = tf.linalg.matmul(VV, L)\n", |
|
|
300 |
" loss2 = tf.linalg.matmul(VV, tf.transpose(self.att_weights, (0, 2, 1)))\n", |
|
|
301 |
"\n", |
|
|
302 |
" loss2 = tf.math.reduce_mean(loss2)\n", |
|
|
303 |
" loss_combined = tf.math.add(self.alpha * loss1, (1 - self.alpha) * loss2)\n", |
|
|
304 |
"\n", |
|
|
305 |
" return loss_combined" |
|
|
306 |
], |
|
|
307 |
"metadata": { |
|
|
308 |
"id": "HbzoGw3lrFlJ" |
|
|
309 |
}, |
|
|
310 |
"execution_count": null, |
|
|
311 |
"outputs": [] |
|
|
312 |
}, |
|
|
313 |
{ |
|
|
314 |
"cell_type": "code", |
|
|
315 |
"source": [ |
|
|
316 |
"####################\n", |
|
|
317 |
"### MODEL ###\n", |
|
|
318 |
"####################\n", |
|
|
319 |
"\n", |
|
|
320 |
"# MILAttentionLayer\n", |
|
|
321 |
"class MILAttentionLayer(layers.Layer):\n", |
|
|
322 |
" \"\"\"Implementation of the attention-based Deep MIL layer.\"\"\"\n", |
|
|
323 |
"\n", |
|
|
324 |
" def __init__(\n", |
|
|
325 |
" self,\n", |
|
|
326 |
" weight_params_dim,\n", |
|
|
327 |
" kernel_initializer=\"glorot_uniform\",\n", |
|
|
328 |
" kernel_regularizer=None,\n", |
|
|
329 |
" use_gated=False,\n", |
|
|
330 |
" **kwargs,\n", |
|
|
331 |
" ):\n", |
|
|
332 |
" super().__init__(**kwargs)\n", |
|
|
333 |
"\n", |
|
|
334 |
" self.weight_params_dim = weight_params_dim\n", |
|
|
335 |
" self.use_gated = use_gated\n", |
|
|
336 |
"\n", |
|
|
337 |
" self.kernel_initializer = keras.initializers.get(kernel_initializer)\n", |
|
|
338 |
" self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)\n", |
|
|
339 |
"\n", |
|
|
340 |
" self.v_init = self.kernel_initializer\n", |
|
|
341 |
" self.w_init = self.kernel_initializer\n", |
|
|
342 |
" self.u_init = self.kernel_initializer\n", |
|
|
343 |
"\n", |
|
|
344 |
" self.v_regularizer = self.kernel_regularizer\n", |
|
|
345 |
" self.w_regularizer = self.kernel_regularizer\n", |
|
|
346 |
" self.u_regularizer = self.kernel_regularizer\n", |
|
|
347 |
"\n", |
|
|
348 |
" def build(self, input_shape):\n", |
|
|
349 |
" input_dim = input_shape[1]\n", |
|
|
350 |
"\n", |
|
|
351 |
" self.v_weight_params = self.add_weight(\n", |
|
|
352 |
" shape=(input_dim, self.weight_params_dim),\n", |
|
|
353 |
" initializer=self.v_init,\n", |
|
|
354 |
" name=\"v\",\n", |
|
|
355 |
" regularizer=self.v_regularizer,\n", |
|
|
356 |
" trainable=True,\n", |
|
|
357 |
" )\n", |
|
|
358 |
"\n", |
|
|
359 |
" self.w_weight_params = self.add_weight(\n", |
|
|
360 |
" shape=(self.weight_params_dim, 1),\n", |
|
|
361 |
" initializer=self.w_init,\n", |
|
|
362 |
" name=\"w\",\n", |
|
|
363 |
" regularizer=self.w_regularizer,\n", |
|
|
364 |
" trainable=True,\n", |
|
|
365 |
" )\n", |
|
|
366 |
"\n", |
|
|
367 |
" if self.use_gated:\n", |
|
|
368 |
" self.u_weight_params = self.add_weight(\n", |
|
|
369 |
" shape=(input_dim, self.weight_params_dim),\n", |
|
|
370 |
" initializer=self.u_init,\n", |
|
|
371 |
" name=\"u\",\n", |
|
|
372 |
" regularizer=self.u_regularizer,\n", |
|
|
373 |
" trainable=True,\n", |
|
|
374 |
" )\n", |
|
|
375 |
" else:\n", |
|
|
376 |
" self.u_weight_params = None\n", |
|
|
377 |
"\n", |
|
|
378 |
" self.input_built = True\n", |
|
|
379 |
"\n", |
|
|
380 |
" def call(self, inputs):\n", |
|
|
381 |
" instances = self.compute_attention_scores(inputs)\n", |
|
|
382 |
" instances = tf.reshape(instances, shape=(-1, dim[2]))\n", |
|
|
383 |
" alpha = tf.math.softmax(instances, axis=1)\n", |
|
|
384 |
" return alpha\n", |
|
|
385 |
"\n", |
|
|
386 |
" def compute_attention_scores(self, instance):\n", |
|
|
387 |
" original_instance = instance\n", |
|
|
388 |
" instance = tf.math.tanh(tf.tensordot(instance, self.v_weight_params, axes=1))\n", |
|
|
389 |
"\n", |
|
|
390 |
" if self.use_gated:\n", |
|
|
391 |
" instance = instance * tf.math.sigmoid(\n", |
|
|
392 |
" tf.tensordot(original_instance, self.u_weight_params, axes=1)\n", |
|
|
393 |
" )\n", |
|
|
394 |
"\n", |
|
|
395 |
" return tf.tensordot(instance, self.w_weight_params, axes=1)\n", |
|
|
396 |
"\n", |
|
|
397 |
"\n", |
|
|
398 |
"# Model\n", |
|
|
399 |
"num_data = batch_size\n", |
|
|
400 |
"D = bag_size\n", |
|
|
401 |
"\n", |
|
|
402 |
"Conv1 = layers.Conv2D(16, (5, 5), data_format=\"channels_last\", activation='relu', kernel_initializer='glorot_uniform', padding='same')\n", |
|
|
403 |
"Conv2 = layers.Conv2D(32, (3,3), data_format=\"channels_last\", activation='relu')\n", |
|
|
404 |
"Conv3 = layers.Conv2D(32, (3,3), data_format=\"channels_last\", activation='relu')\n", |
|
|
405 |
"Conv4 = layers.Conv2D(32, (3,3), data_format=\"channels_last\", activation='relu')\n", |
|
|
406 |
"Conv5 = layers.Conv2D(32, (3,3), data_format=\"channels_last\", activation='relu')\n", |
|
|
407 |
"Conv6 = layers.Conv2D(32, (3,3), data_format=\"channels_last\", activation='relu')\n", |
|
|
408 |
"\n", |
|
|
409 |
"def VGG(inp):\n", |
|
|
410 |
" inp = tf.reshape(tf.transpose(inp, perm=(0,3,1,2,4)), shape=(-1, dim[0], dim[1], 3))\n", |
|
|
411 |
" x = Conv1(inp)\n", |
|
|
412 |
" x = layers.BatchNormalization()(x)\n", |
|
|
413 |
" x = layers.MaxPool2D((2, 2), data_format=\"channels_last\", strides=(2, 2))(x)\n", |
|
|
414 |
" x = Conv2(x)\n", |
|
|
415 |
" x = layers.BatchNormalization()(x)\n", |
|
|
416 |
" x = layers.MaxPool2D((2, 2), strides=(2, 2), data_format=\"channels_last\")(x)\n", |
|
|
417 |
" x = layers.Dropout(0.3)(x)\n", |
|
|
418 |
"\n", |
|
|
419 |
" x = Conv3(x)\n", |
|
|
420 |
" x = layers.BatchNormalization()(x)\n", |
|
|
421 |
" x = layers.MaxPool2D((2, 2), strides=(2, 2), data_format=\"channels_last\")(x)\n", |
|
|
422 |
" x = Conv4(x)\n", |
|
|
423 |
" x = layers.BatchNormalization()(x)\n", |
|
|
424 |
" x = layers.MaxPool2D((2, 2), strides=(2, 2), data_format=\"channels_last\")(x)\n", |
|
|
425 |
"\n", |
|
|
426 |
" x = Conv5(x)\n", |
|
|
427 |
" x = layers.BatchNormalization()(x)\n", |
|
|
428 |
" x = layers.MaxPool2D((2, 2), strides=(2, 2), data_format=\"channels_last\")(x)\n", |
|
|
429 |
" x = layers.Dropout(0.3)(x)\n", |
|
|
430 |
"\n", |
|
|
431 |
" x = Conv6(x)\n", |
|
|
432 |
" x = layers.BatchNormalization()(x)\n", |
|
|
433 |
" x = layers.MaxPool2D((2, 2), strides=(2, 2), data_format=\"channels_last\")(x)\n", |
|
|
434 |
" x = layers.Dropout(0.3)(x)\n", |
|
|
435 |
"\n", |
|
|
436 |
" return layers.Flatten()(x)\n", |
|
|
437 |
"\n", |
|
|
438 |
"def build_model():\n", |
|
|
439 |
" inp = keras.Input(shape=(*dim, 3))\n", |
|
|
440 |
" H = VGG(inp)\n", |
|
|
441 |
" A = MILAttentionLayer(\n", |
|
|
442 |
" weight_params_dim=64,\n", |
|
|
443 |
" kernel_regularizer=keras.regularizers.l2(0.01),\n", |
|
|
444 |
" use_gated=True,\n", |
|
|
445 |
" name=\"alpha\",\n", |
|
|
446 |
" )(H)\n", |
|
|
447 |
" H = tf.reshape(H, shape=(-1, dim[2], H.shape[1]))\n", |
|
|
448 |
" A = tf.expand_dims(A, axis=1)\n", |
|
|
449 |
" intermediate = tf.linalg.matmul(A, H)\n", |
|
|
450 |
" intermediate = tf.squeeze(intermediate, axis=1)\n", |
|
|
451 |
" intermediate = layers.Dropout(0.25)(intermediate)\n", |
|
|
452 |
" intermediate = layers.Dense(128)(intermediate)\n", |
|
|
453 |
" out = layers.Dense(1, activation='sigmoid')(intermediate)\n", |
|
|
454 |
" return A, keras.Model(inputs=inp, outputs=out)\n", |
|
|
455 |
"\n", |
|
|
456 |
"A, model = build_model()\n", |
|
|
457 |
"\n", |
|
|
458 |
"auc = tf.keras.metrics.AUC()\n", |
|
|
459 |
"adam = tf.compat.v1.train.AdamOptimizer(learning_rate=5e-5)\n", |
|
|
460 |
"model.compile(\n", |
|
|
461 |
" optimizer=adam,\n", |
|
|
462 |
" loss= smoothMIL(A, 0.5, 1),\n", |
|
|
463 |
" metrics=[auc, 'accuracy']\n", |
|
|
464 |
")\n", |
|
|
465 |
"earlyStopping = EarlyStopping(monitor='val_loss', patience=8, verbose=1, mode='min')\n", |
|
|
466 |
"print(model.summary())" |
|
|
467 |
], |
|
|
468 |
"metadata": { |
|
|
469 |
"id": "TUE7oM38qx6y" |
|
|
470 |
}, |
|
|
471 |
"execution_count": null, |
|
|
472 |
"outputs": [] |
|
|
473 |
}, |
|
|
474 |
{ |
|
|
475 |
"cell_type": "code", |
|
|
476 |
"source": [ |
|
|
477 |
"####################\n", |
|
|
478 |
"### Train ###\n", |
|
|
479 |
"####################\n", |
|
|
480 |
"for i in range(0, 5):\n", |
|
|
481 |
" checkpoint_path = \"./model/att_{}.ckpt\".format(i)\n", |
|
|
482 |
" checkpoint_dir = os.path.dirname(checkpoint_path)\n", |
|
|
483 |
"\n", |
|
|
484 |
" cp_callback = keras.callbacks.ModelCheckpoint(\n", |
|
|
485 |
" filepath=checkpoint_path,\n", |
|
|
486 |
" monitor='val_loss',\n", |
|
|
487 |
" save_best_only=True,\n", |
|
|
488 |
" save_weights_only=True,\n", |
|
|
489 |
" verbose=1,\n", |
|
|
490 |
" mode='min'\n", |
|
|
491 |
" )\n", |
|
|
492 |
"\n", |
|
|
493 |
"\n", |
|
|
494 |
" history = model.fit(\n", |
|
|
495 |
" train_dataset,\n", |
|
|
496 |
" validation_data=val_dataset,\n", |
|
|
497 |
" epochs=200,\n", |
|
|
498 |
" callbacks=[earlyStopping, cp_callback],\n", |
|
|
499 |
" )\n", |
|
|
500 |
"\n", |
|
|
501 |
" hist_df = pd.DataFrame(history.history)\n", |
|
|
502 |
" hist_csv_file = './log.csv'\n", |
|
|
503 |
"\n", |
|
|
504 |
" with open(hist_csv_file, mode='w') as f:\n", |
|
|
505 |
" hist_df.to_csv(f)" |
|
|
506 |
], |
|
|
507 |
"metadata": { |
|
|
508 |
"id": "ffrwrgDRqx9f" |
|
|
509 |
}, |
|
|
510 |
"execution_count": null, |
|
|
511 |
"outputs": [] |
|
|
512 |
} |
|
|
513 |
] |
|
|
514 |
} |