[5ba3a6]: / rs_dataset.py

Download this file

228 lines (195 with data), 7.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
"""
@File : rs_dataset.py
@Time : 2019/6/22 10:57
@Author : Parker
@Email : now_cherish@163.com
@Software: PyCharm
@Des : data set
"""
import csv
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import pydicom
import os.path as osp
import os
from PIL import Image
import numpy as np
import random
import cv2
from tqdm import tqdm
import matplotlib.pyplot as plt
import time
from skimage.morphology import remove_small_holes, remove_small_objects
from skimage.measure import label, regionprops
from skimage.filters import threshold_otsu
def data_understanding():
labels = prepare_label()
s, ss = {}, {}
for key, one in tqdm(zip(list(labels.keys()), list(labels.values()))):
lb = int("".join(map(str, one)), 2)
if lb not in s.keys():
s[lb] = []
s[lb].append(key)
for one in labels.values():
for idx, t in enumerate(one):
if idx not in ss.keys():
ss[idx] = 0
if t == 1:
ss[idx] += 1
for one in s.keys():
print(bin(one)[2:].zfill(6), len(s[one]))
def prepare_label():
labels = ["epidural", "intraparenchymal", "intraventricular",
"subarachnoid", "subdural", "any"]
label_ranks = {}
for i in range(len(labels)):
label_ranks[labels[i]] = i
all_true_labels = {}
with open(osp.join('/media/tiger/zzr/rsna/stage_1_train.csv'), 'r') as fp:
csv_reader = csv.reader(fp, delimiter=',')
next(csv_reader, None)
print('processing data ...')
for row in tqdm(csv_reader):
id = "_".join(row[0].split('_')[:2])
label_id = label_ranks[row[0].split('_')[2]]
if id not in all_true_labels:
all_true_labels[id] = [0] * 6
all_true_labels[id][label_id] = int(row[1])
return all_true_labels
class RSDataset(Dataset):
def __init__(self, rootpth='/media/tiger/zzr/rsna', des_size=(512, 512), mode='train'):
"""
:param rootpth: 根目录
:param re_size: 数据同一resize到这个尺寸再后处理
:param crop_size: 剪切
:param erase: 遮罩比例
:param mode: train/val/test
"""
self.root_path = rootpth
self.des_size = des_size
self.mode = mode
self.name = None
# 处理对应标签
assert (mode == 'train' or mode == 'val' or mode == 'test')
labels = ["epidural", "intraparenchymal", "intraventricular",
"subarachnoid", "subdural", "any"]
self.label_ranks = {}
for i in range(len(labels)):
self.label_ranks[labels[i]] = i
self.labels = self.prepare_label()
# 读取文件名称
self.file_names = []
for root,dirs,names in os.walk(osp.join(rootpth, mode)):
for name in names:
if name == 'ID_6431af929.dcm':
continue
self.file_names.append(osp.join(root,name))
# 确定分隔符号
self.split_char = '\\' if '\\' in self.file_names[0] else '/'
# totensor 转换n
self.to_tensor = transforms.Compose([ # 32.98408291578699 33.70147134726827
transforms.ToTensor(),
transforms.Normalize(32.98408291578699, 33.70147134726827)
])
def data_loader(self, fname):
"""
load data
:param fname:
:return:
"""
ds = pydicom.dcmread(fname)
try:
windowCenter = int(ds.WindowCenter[0])
windowWidth = int(ds.WindowWidth[0])
except:
windowCenter = int(ds.WindowCenter)
windowWidth = int(ds.WindowWidth)
intercept = ds.RescaleIntercept
slope = ds.RescaleSlope
data = ds.pixel_array
data = np.clip(data * slope + intercept, windowCenter - windowWidth / 2, windowCenter + windowWidth / 2).astype(np.float32)
data = self.preprocess(data)
return data
def preprocess(self, data):
"""
otsu threshold
:param data:
:return:
"""
try:
thres = threshold_otsu(data)
except:
thres = np.min(data)
data1 = data > thres
data1 = remove_small_objects(data1)
label_data = label(data1)
props = regionprops(label_data)
area = 0
bbox = (0, 0, np.shape(data)[0], np.shape(data)[1])
for idx, i in enumerate(props):
if i.area > area:
area = i.area
bbox = i.bbox
data1 = data[bbox[0]:bbox[2]+1, bbox[1]:bbox[-1]+1]
return data1
def prepare_label(self):
all_true_labels = {}
import csv
with open(osp.join(self.root_path, 'stage_1_train.csv'), 'r') as fp:
csv_reader = csv.reader(fp, delimiter=',')
next(csv_reader, None)
for row in tqdm(csv_reader):
id = "_".join(row[0].split('_')[:2])
label_id = self.label_ranks[row[0].split('_')[2]]
if id not in all_true_labels:
all_true_labels[id] = [0] * 6
all_true_labels[id][label_id] = float(row[1])
return all_true_labels
def __getitem__(self, idx):
self.name = self.file_names[idx]
category = self.labels[self.name.split(self.split_char)[-1].split('.')[0]]
img = cv2.resize(self.data_loader(self.name), dsize=self.des_size, interpolation=cv2.INTER_LINEAR)
# plt.imshow(img)
# plt.show()
return self.to_tensor(img), torch.tensor(category)
def __len__(self):
return len(self.file_names)
def calculateMeanStd(self, idx):
"""
:param idx:
:return:
"""
self.name = self.file_names[idx]
img = self.data_loader(self.name)
return np.mean(img), np.std(img)
class RSDataset_test(RSDataset):
def __init__(self, rootpth='/media/tiger/zzr/rsna', des_size=(512, 512), mode='test'):
super().__init__()
# 读取文件名称
self.file_names = []
for root, dirs, names in os.walk(osp.join(rootpth, mode)):
for name in names:
self.file_names.append(osp.join(root, name))
def __getitem__(self, idx):
self.name = self.file_names[idx]
img = cv2.resize(self.data_loader(self.name), dsize=self.des_size, interpolation=cv2.INTER_LINEAR)
return self.to_tensor(img), self.name.split(self.split_char)[-1].split('.')[0]
def __len__(self):
return len(self.file_names)
if __name__ == '__main__':
data = RSDataset_test()
for i in tqdm(range(len(data))):
a, b = data.__getitem__(i)
print(data.name)
print(b)
# mean, std = 0, 0
# for i in tqdm(range(len(data))):
# u, d = data.calculateMeanStd(i)
# u /= len(data)
# d /= len(data)
# mean += u
# std += d
#
# print(mean, std)