[5ba3a6]: / res_network.py

Download this file

166 lines (129 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# -*- coding: utf-8 -*-
"""
@File : resNetwork.py
@Time : 2019/6/23 15:29
@Author : Parker
@Email : now_cherish@163.com
@Software: PyCharm
@Des :
"""
import torch
import torch.nn as nn
from torchvision.models import resnet18, resnet34, resnet101, densenet, inception_v3, mobilenet_v2
import torch.nn.functional as F
import pretrainedmodels
class Resnet18(nn.Module):
def __init__(self, n_classes=6):
super(Resnet18,self).__init__()
src_net = resnet18(pretrained=True)
modules = list(src_net.children())[:-2]
modules[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.features = nn.Sequential(*modules)
self.classifier = nn.Linear(512, n_classes)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out,(1,1)).view(features.size(0), -1)
out = nn.Sigmoid()(self.classifier(out))
return out
class Resnet34(nn.Module):
def __init__(self, n_classes=45):
super(Resnet34, self).__init__()
src_net = resnet34(pretrained=True)
modules = list(src_net.children())[:-2]
self.features = nn.Sequential(*modules)
self.classifier = nn.Linear(512, n_classes)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out,(1,1)).view(features.size(0), -1)
out = self.classifier(out)
# out = torch.sigmoid(out)
return out
class Resnet101(nn.Module):
def __init__(self, n_classes=45):
super(Resnet101, self).__init__()
src_net = resnet101(pretrained=True)
modules = list(src_net.children())[:-2]
self.features = nn.Sequential(*modules)
self.classifier = nn.Linear(2048, n_classes)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out,(1,1)).view(features.size(0), -1)
out = self.classifier(out)
# out = torch.sigmoid(out)
return out
class Densenet121(nn.Module):
def __init__(self, n_classes=45):
super(Densenet121, self).__init__()
src_net = densenet.densenet121(pretrained=False)
# print(src_net)
modules = list(src_net.children())[:-1]
self.features = nn.Sequential(*modules)
self.classifier = nn.Linear(1024, n_classes)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
out = self.classifier(out)
# out = torch.sigmoid(out)
return out
class MobileNet(nn.Module):
def __init__(self, n_classes=45):
super(MobileNet,self).__init__()
src_net = mobilenet_v2(pretrained=True)
modules = list(src_net.children())[:-2]
self.features = nn.Sequential(*modules)
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(1280, 512),
nn.Linear(512, n_classes)
)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out,(1,1)).view(features.size(0), -1)
out = self.classifier(out)
return out
class SEResNext50(nn.Module):
def __init__(self, n_classes=6):
super(SEResNext50, self).__init__()
src_net = pretrainedmodels.__dict__['se_resnext50_32x4d'](num_classes=1000, pretrained='imagenet')
modules = list(src_net.children())[:-2]
modules[0] = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.features = nn.Sequential(*modules)
self.classifier = nn.Linear(2048, n_classes)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
out = nn.Sigmoid()(self.classifier(out))
return out
class Inceptionv4(nn.Module):
def __init__(self, n_classes=6):
super(Inceptionv4, self).__init__()
src_net = pretrainedmodels.__dict__['inceptionv4'](num_classes=1000,
pretrained='imagenet')
modules = list(src_net.children())[:-1]
self.features = nn.Sequential(*modules)
self.classifier = nn.Linear(1536, n_classes)
nn.init.constant_(self.classifier.bias, 0)
def forward(self, x):
features = self.features(x)
out = F.leaky_relu(features)
out = F.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
out = nn.Sigmoid()(self.classifier(out))
return out
if __name__ == '__main__':
net = SEResNext50()
print(net)
# net = Densenet121()
aa = torch.randn((5, 1, 512, 512))
print(net(aa).size())