|
a |
|
b/predict.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
@File : trian_res34.py |
|
|
4 |
@Time : 2019/6/23 15:40 |
|
|
5 |
@Author : Parker |
|
|
6 |
@Email : now_cherish@163.com |
|
|
7 |
@Software: PyCharm |
|
|
8 |
@Des : |
|
|
9 |
""" |
|
|
10 |
|
|
|
11 |
import torch |
|
|
12 |
import torch.nn as nn |
|
|
13 |
import torch.nn.functional as F |
|
|
14 |
from torch.utils.data import DataLoader |
|
|
15 |
import torch.optim as optim |
|
|
16 |
from tensorboardX import SummaryWriter |
|
|
17 |
|
|
|
18 |
import numpy as np |
|
|
19 |
import time |
|
|
20 |
import datetime |
|
|
21 |
import argparse |
|
|
22 |
import os |
|
|
23 |
import os.path as osp |
|
|
24 |
|
|
|
25 |
from rs_dataset import RSDataset_test |
|
|
26 |
from get_logger import get_logger |
|
|
27 |
from res_network import Resnet18, Resnet34, Resnet101 |
|
|
28 |
from tqdm import tqdm |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def parse_args(): |
|
|
32 |
parse = argparse.ArgumentParser() |
|
|
33 |
parse.add_argument('--epoch', type=int, default=15) |
|
|
34 |
parse.add_argument('--schedule_step', type=int, default=2) |
|
|
35 |
|
|
|
36 |
parse.add_argument('--test_batch_size', type=int, default=128) |
|
|
37 |
parse.add_argument('--num_workers', type=int, default=16) |
|
|
38 |
|
|
|
39 |
parse.add_argument('--eval_fre', type=int, default=1) |
|
|
40 |
parse.add_argument('--msg_fre', type=int, default=10) |
|
|
41 |
parse.add_argument('--save_fre', type=int, default=2) |
|
|
42 |
|
|
|
43 |
parse.add_argument('--name', type=str, default='res34_baseline', |
|
|
44 |
help='unique out file name of this task include log/model_out/tensorboard log') |
|
|
45 |
parse.add_argument('--data_dir', type=str, default='/media/tiger/zzr/rsna') |
|
|
46 |
parse.add_argument('--log_dir', type=str, default='./logs') |
|
|
47 |
parse.add_argument('--tensorboard_dir', type=str, default='./tensorboard') |
|
|
48 |
parse.add_argument('--model_out_dir', type=str, default='./model_out') |
|
|
49 |
parse.add_argument('--model_out_name', type=str, default='final_model.pth') |
|
|
50 |
parse.add_argument('--seed', type=int, default=5, help='random seed') |
|
|
51 |
parse.add_argument('--eval_model_path', type=str, default='/media/tiger/zzr/rsna_script/model_out/191005-002929_temp/out_9.pth') |
|
|
52 |
return parse.parse_args() |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
def predict(args): |
|
|
56 |
test_set = RSDataset_test(rootpth=args.data_dir, mode='test') |
|
|
57 |
test_loader = DataLoader(test_set, |
|
|
58 |
batch_size=args.test_batch_size, |
|
|
59 |
drop_last=False, |
|
|
60 |
shuffle=False, |
|
|
61 |
pin_memory=True, |
|
|
62 |
num_workers=args.num_workers) |
|
|
63 |
net = Resnet18() |
|
|
64 |
net.eval() |
|
|
65 |
net.load_state_dict(torch.load(args.eval_model_path)) |
|
|
66 |
net.cuda() |
|
|
67 |
|
|
|
68 |
labels = ["epidural", "intraparenchymal", "intraventricular", |
|
|
69 |
"subarachnoid", "subdural", "any"] |
|
|
70 |
with open("result.csv", 'w') as fp: |
|
|
71 |
fp.write('ID,Label\n') |
|
|
72 |
with torch.no_grad(): |
|
|
73 |
for img, name in tqdm(test_loader): |
|
|
74 |
img = img.cuda() |
|
|
75 |
outputs = net(img).cpu().numpy() |
|
|
76 |
for idx, i in enumerate(name): |
|
|
77 |
for idxj, j in enumerate(labels): |
|
|
78 |
fp.write(i + '_' + j + ',' + str(outputs[idx][idxj]) + '\n') |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
if __name__ == '__main__': |
|
|
82 |
args = parse_args() |
|
|
83 |
|
|
|
84 |
torch.manual_seed(args.seed) |
|
|
85 |
torch.cuda.manual_seed(args.seed) |
|
|
86 |
|
|
|
87 |
predict(args) |