--- a +++ b/predict.py @@ -0,0 +1,87 @@ +# -*- coding: utf-8 -*- +""" +@File : trian_res34.py +@Time : 2019/6/23 15:40 +@Author : Parker +@Email : now_cherish@163.com +@Software: PyCharm +@Des : +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data import DataLoader +import torch.optim as optim +from tensorboardX import SummaryWriter + +import numpy as np +import time +import datetime +import argparse +import os +import os.path as osp + +from rs_dataset import RSDataset_test +from get_logger import get_logger +from res_network import Resnet18, Resnet34, Resnet101 +from tqdm import tqdm + + +def parse_args(): + parse = argparse.ArgumentParser() + parse.add_argument('--epoch', type=int, default=15) + parse.add_argument('--schedule_step', type=int, default=2) + + parse.add_argument('--test_batch_size', type=int, default=128) + parse.add_argument('--num_workers', type=int, default=16) + + parse.add_argument('--eval_fre', type=int, default=1) + parse.add_argument('--msg_fre', type=int, default=10) + parse.add_argument('--save_fre', type=int, default=2) + + parse.add_argument('--name', type=str, default='res34_baseline', + help='unique out file name of this task include log/model_out/tensorboard log') + parse.add_argument('--data_dir', type=str, default='/media/tiger/zzr/rsna') + parse.add_argument('--log_dir', type=str, default='./logs') + parse.add_argument('--tensorboard_dir', type=str, default='./tensorboard') + parse.add_argument('--model_out_dir', type=str, default='./model_out') + parse.add_argument('--model_out_name', type=str, default='final_model.pth') + parse.add_argument('--seed', type=int, default=5, help='random seed') + parse.add_argument('--eval_model_path', type=str, default='/media/tiger/zzr/rsna_script/model_out/191005-002929_temp/out_9.pth') + return parse.parse_args() + + +def predict(args): + test_set = RSDataset_test(rootpth=args.data_dir, mode='test') + test_loader = DataLoader(test_set, + batch_size=args.test_batch_size, + drop_last=False, + shuffle=False, + pin_memory=True, + num_workers=args.num_workers) + net = Resnet18() + net.eval() + net.load_state_dict(torch.load(args.eval_model_path)) + net.cuda() + + labels = ["epidural", "intraparenchymal", "intraventricular", + "subarachnoid", "subdural", "any"] + with open("result.csv", 'w') as fp: + fp.write('ID,Label\n') + with torch.no_grad(): + for img, name in tqdm(test_loader): + img = img.cuda() + outputs = net(img).cpu().numpy() + for idx, i in enumerate(name): + for idxj, j in enumerate(labels): + fp.write(i + '_' + j + ',' + str(outputs[idx][idxj]) + '\n') + + +if __name__ == '__main__': + args = parse_args() + + torch.manual_seed(args.seed) + torch.cuda.manual_seed(args.seed) + + predict(args)