|
a |
|
b/evaluate.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
@File : trian_res34.py |
|
|
4 |
@Time : 2019/6/23 15:40 |
|
|
5 |
@Author : Parker |
|
|
6 |
@Email : now_cherish@163.com |
|
|
7 |
@Software: PyCharm |
|
|
8 |
@Des : |
|
|
9 |
""" |
|
|
10 |
|
|
|
11 |
import torch |
|
|
12 |
import torch.nn as nn |
|
|
13 |
import torch.nn.functional as F |
|
|
14 |
from torch.utils.data import DataLoader |
|
|
15 |
import torch.optim as optim |
|
|
16 |
from tensorboardX import SummaryWriter |
|
|
17 |
|
|
|
18 |
import numpy as np |
|
|
19 |
import time |
|
|
20 |
import datetime |
|
|
21 |
import argparse |
|
|
22 |
import os |
|
|
23 |
import os.path as osp |
|
|
24 |
|
|
|
25 |
from rs_dataset import RSDataset |
|
|
26 |
from get_logger import get_logger |
|
|
27 |
from res_network import Resnet18, Resnet34 |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
def parse_args(): |
|
|
31 |
parse = argparse.ArgumentParser() |
|
|
32 |
parse.add_argument('--epoch', type=int, default=15) |
|
|
33 |
parse.add_argument('--schedule_step', type=int, default=2) |
|
|
34 |
|
|
|
35 |
parse.add_argument('--batch_size', type=int, default=48) |
|
|
36 |
parse.add_argument('--test_batch_size', type=int, default=256) |
|
|
37 |
parse.add_argument('--num_workers', type=int, default=16) |
|
|
38 |
|
|
|
39 |
parse.add_argument('--eval_fre', type=int, default=1) |
|
|
40 |
parse.add_argument('--msg_fre', type=int, default=10) |
|
|
41 |
parse.add_argument('--save_fre', type=int, default=2) |
|
|
42 |
|
|
|
43 |
parse.add_argument('--name', type=str, default='res34_baseline', |
|
|
44 |
help='unique out file name of this task include log/model_out/tensorboard log') |
|
|
45 |
parse.add_argument('--data_dir', type=str, default='/home/tiger/projects/rscup2019_classifier/data') |
|
|
46 |
parse.add_argument('--log_dir', type=str, default='./logs') |
|
|
47 |
parse.add_argument('--tensorboard_dir', type=str, default='./tensorboard') |
|
|
48 |
parse.add_argument('--model_out_dir', type=str, default='./model_out') |
|
|
49 |
parse.add_argument('--model_out_name', type=str, default='final_model.pth') |
|
|
50 |
parse.add_argument('--seed', type=int, default=5, help='random seed') |
|
|
51 |
parse.add_argument('--eval_model_path', type=str, |
|
|
52 |
default='/home/tiger/projects/rscup2019_classifier/model_out/logistic_out_6.pth') |
|
|
53 |
return parse.parse_args() |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def evalute(args): |
|
|
57 |
val_set = RSDataset(rootpth=args.data_dir, mode='val') |
|
|
58 |
val_loader = DataLoader(val_set, |
|
|
59 |
batch_size=args.test_batch_size, |
|
|
60 |
drop_last=True, |
|
|
61 |
shuffle=True, |
|
|
62 |
pin_memory=True, |
|
|
63 |
num_workers=args.num_workers) |
|
|
64 |
net = Resnet34() |
|
|
65 |
net.eval() |
|
|
66 |
net.load_state_dict(torch.load(args.eval_model_path)) |
|
|
67 |
net.cuda() |
|
|
68 |
|
|
|
69 |
total = [0 for i in range(45)] |
|
|
70 |
correct = [0 for i in range(45)] |
|
|
71 |
with torch.no_grad(): |
|
|
72 |
for img, lb in val_loader: |
|
|
73 |
img, lb = img.cuda(), lb.cuda() |
|
|
74 |
outputs = net(img) |
|
|
75 |
outputs = torch.sigmoid(outputs) |
|
|
76 |
predicted = torch.max(outputs, dim=1)[1] |
|
|
77 |
res = predicted == lb |
|
|
78 |
|
|
|
79 |
for label_idx in range(args.test_batch_size): |
|
|
80 |
label_single = lb[label_idx] |
|
|
81 |
correct[label_single] += res[label_idx].item() |
|
|
82 |
total[label_single] += 1 |
|
|
83 |
# print(correct, total) |
|
|
84 |
|
|
|
85 |
acc_str = 'Accuracy: {}\n'.format(sum(correct)/sum(total)) |
|
|
86 |
for acc_idx in range(45): |
|
|
87 |
try: |
|
|
88 |
acc = correct[acc_idx] / total[acc_idx] |
|
|
89 |
except: |
|
|
90 |
acc = 0 |
|
|
91 |
finally: |
|
|
92 |
acc_str += 'classID: {},\taccuracy: {}\n'.format(acc_idx+1, acc) |
|
|
93 |
print(acc_str) |
|
|
94 |
|
|
|
95 |
|
|
|
96 |
if __name__ == '__main__': |
|
|
97 |
args = parse_args() |
|
|
98 |
|
|
|
99 |
torch.manual_seed(args.seed) |
|
|
100 |
torch.cuda.manual_seed(args.seed) |
|
|
101 |
|
|
|
102 |
evalute(args) |