--- a +++ b/evaluate.py @@ -0,0 +1,102 @@ +# -*- coding: utf-8 -*- +""" +@File : trian_res34.py +@Time : 2019/6/23 15:40 +@Author : Parker +@Email : now_cherish@163.com +@Software: PyCharm +@Des : +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data import DataLoader +import torch.optim as optim +from tensorboardX import SummaryWriter + +import numpy as np +import time +import datetime +import argparse +import os +import os.path as osp + +from rs_dataset import RSDataset +from get_logger import get_logger +from res_network import Resnet18, Resnet34 + + +def parse_args(): + parse = argparse.ArgumentParser() + parse.add_argument('--epoch', type=int, default=15) + parse.add_argument('--schedule_step', type=int, default=2) + + parse.add_argument('--batch_size', type=int, default=48) + parse.add_argument('--test_batch_size', type=int, default=256) + parse.add_argument('--num_workers', type=int, default=16) + + parse.add_argument('--eval_fre', type=int, default=1) + parse.add_argument('--msg_fre', type=int, default=10) + parse.add_argument('--save_fre', type=int, default=2) + + parse.add_argument('--name', type=str, default='res34_baseline', + help='unique out file name of this task include log/model_out/tensorboard log') + parse.add_argument('--data_dir', type=str, default='/home/tiger/projects/rscup2019_classifier/data') + parse.add_argument('--log_dir', type=str, default='./logs') + parse.add_argument('--tensorboard_dir', type=str, default='./tensorboard') + parse.add_argument('--model_out_dir', type=str, default='./model_out') + parse.add_argument('--model_out_name', type=str, default='final_model.pth') + parse.add_argument('--seed', type=int, default=5, help='random seed') + parse.add_argument('--eval_model_path', type=str, + default='/home/tiger/projects/rscup2019_classifier/model_out/logistic_out_6.pth') + return parse.parse_args() + + +def evalute(args): + val_set = RSDataset(rootpth=args.data_dir, mode='val') + val_loader = DataLoader(val_set, + batch_size=args.test_batch_size, + drop_last=True, + shuffle=True, + pin_memory=True, + num_workers=args.num_workers) + net = Resnet34() + net.eval() + net.load_state_dict(torch.load(args.eval_model_path)) + net.cuda() + + total = [0 for i in range(45)] + correct = [0 for i in range(45)] + with torch.no_grad(): + for img, lb in val_loader: + img, lb = img.cuda(), lb.cuda() + outputs = net(img) + outputs = torch.sigmoid(outputs) + predicted = torch.max(outputs, dim=1)[1] + res = predicted == lb + + for label_idx in range(args.test_batch_size): + label_single = lb[label_idx] + correct[label_single] += res[label_idx].item() + total[label_single] += 1 + # print(correct, total) + + acc_str = 'Accuracy: {}\n'.format(sum(correct)/sum(total)) + for acc_idx in range(45): + try: + acc = correct[acc_idx] / total[acc_idx] + except: + acc = 0 + finally: + acc_str += 'classID: {},\taccuracy: {}\n'.format(acc_idx+1, acc) + print(acc_str) + + +if __name__ == '__main__': + args = parse_args() + + torch.manual_seed(args.seed) + torch.cuda.manual_seed(args.seed) + + evalute(args)