Switch to unified view

a b/notebooks/04-Efficient B0 Brain+Subdural Windowed Image.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "metadata": {},
6
   "source": [
7
    "# RSNA Intracranial Hemorrhage Detection "
8
   ]
9
  },
10
  {
11
   "cell_type": "markdown",
12
   "metadata": {},
13
   "source": [
14
    "<b>Competition Overview</b><br/><br/>\n",
15
    "Intracranial hemorrhage, bleeding that occurs inside the cranium, is a serious health problem requiring rapid and often intensive medical treatment. For example, intracranial hemorrhages account for approximately 10% of strokes in the U.S., where stroke is the fifth-leading cause of death. Identifying the location and type of any hemorrhage present is a critical step in treating the patient.\n",
16
    "\n",
17
    "Diagnosis requires an urgent procedure. When a patient shows acute neurological symptoms such as severe headache or loss of consciousness, highly trained specialists review medical images of the patient’s cranium to look for the presence, location and type of hemorrhage. The process is complicated and often time consuming."
18
   ]
19
  },
20
  {
21
   "cell_type": "markdown",
22
   "metadata": {},
23
   "source": [
24
    "<b>What am i predicting?</b><br/><br/>\n",
25
    "In this competition our goal is to predict intracranial hemorrhage and its subtypes. Given an image the we need to predict probablity of each subtype. This indicates its a multilabel classification problem."
26
   ]
27
  },
28
  {
29
   "cell_type": "markdown",
30
   "metadata": {},
31
   "source": [
32
    "<b>Competition Evaluation Metric</b><br/><br/>\n",
33
    "Evaluation metric is weighted multi-label logarithmic loss. So for given image we need to predict probality for each subtype. There is also an any label, which indicates that a hemorrhage of ANY kind exists in the image. The any label is weighted more highly than specific hemorrhage sub-types.\n",
34
    "\n",
35
    "<b>Note:</b>The weights for each subtype for calculating weighted multi-label logarithmic loss is **not** given as part of the competition. We will be using binary cross entropy loss as weights are not available"
36
   ]
37
  },
38
  {
39
   "cell_type": "markdown",
40
   "metadata": {},
41
   "source": [
42
    "<b>Dataset Description</b>\n",
43
    "\n",
44
    "The dataset is divided into two parts\n",
45
    "\n",
46
    "1. Train\n",
47
    "2. Test\n",
48
    "\n",
49
    "**1. Train**\n",
50
    "Number of rows: 40,45,548 records.\n",
51
    "Number of columns: 2\n",
52
    "\n",
53
    "Columns:\n",
54
    "\n",
55
    "**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n",
56
    "\n",
57
    "Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name\n",
58
    "\n",
59
    "**Label**: The target label whether that sub-type of hemorrhage (or any hemorrhage in the case of any) exists in the indicated image. 1 --> Exists and 0 --> Doesn't exist.\n",
60
    "\n",
61
    "**2. Test**\n",
62
    "Number of rows: 4,71,270 records.\n",
63
    "\n",
64
    "Columns:\n",
65
    "\n",
66
    "**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n",
67
    "\n",
68
    "Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name"
69
   ]
70
  },
71
  {
72
   "cell_type": "code",
73
   "execution_count": 1,
74
   "metadata": {},
75
   "outputs": [
76
    {
77
     "name": "stderr",
78
     "output_type": "stream",
79
     "text": [
80
      "Using TensorFlow backend.\n"
81
     ]
82
    }
83
   ],
84
   "source": [
85
    "import numpy as np\n",
86
    "import pandas as pd\n",
87
    "import pydicom\n",
88
    "import os\n",
89
    "import glob\n",
90
    "import random\n",
91
    "import cv2\n",
92
    "import tensorflow as tf\n",
93
    "from math import ceil, floor\n",
94
    "from tqdm import tqdm\n",
95
    "from imgaug import augmenters as iaa\n",
96
    "import matplotlib.pyplot as plt\n",
97
    "from math import ceil, floor\n",
98
    "import keras\n",
99
    "import keras.backend as K\n",
100
    "from keras.callbacks import Callback, ModelCheckpoint\n",
101
    "from keras.layers import Dense, Flatten, Dropout\n",
102
    "from keras.models import Model, load_model\n",
103
    "from keras.utils import Sequence\n",
104
    "from keras.losses import binary_crossentropy\n",
105
    "from keras.optimizers import Adam"
106
   ]
107
  },
108
  {
109
   "cell_type": "code",
110
   "execution_count": 2,
111
   "metadata": {},
112
   "outputs": [],
113
   "source": [
114
    "# Random Seed\n",
115
    "SEED = 42\n",
116
    "np.random.seed(SEED)\n",
117
    "\n",
118
    "# some constants\n",
119
    "TEST_SIZE = 0.06\n",
120
    "HEIGHT = 256\n",
121
    "WIDTH = 256\n",
122
    "TRAIN_BATCH_SIZE = 32\n",
123
    "VALID_BATCH_SIZE = 64\n",
124
    "\n",
125
    "# Train and Test folders\n",
126
    "input_folder = '../input/rsna-intracranial-hemorrhage-detection/'\n",
127
    "path_train_img = input_folder + 'stage_1_train_images/'\n",
128
    "path_test_img = input_folder + 'stage_1_test_images/'"
129
   ]
130
  },
131
  {
132
   "cell_type": "code",
133
   "execution_count": 3,
134
   "metadata": {},
135
   "outputs": [
136
    {
137
     "data": {
138
      "text/html": [
139
       "<div>\n",
140
       "<style scoped>\n",
141
       "    .dataframe tbody tr th:only-of-type {\n",
142
       "        vertical-align: middle;\n",
143
       "    }\n",
144
       "\n",
145
       "    .dataframe tbody tr th {\n",
146
       "        vertical-align: top;\n",
147
       "    }\n",
148
       "\n",
149
       "    .dataframe thead th {\n",
150
       "        text-align: right;\n",
151
       "    }\n",
152
       "</style>\n",
153
       "<table border=\"1\" class=\"dataframe\">\n",
154
       "  <thead>\n",
155
       "    <tr style=\"text-align: right;\">\n",
156
       "      <th></th>\n",
157
       "      <th>ID</th>\n",
158
       "      <th>Label</th>\n",
159
       "    </tr>\n",
160
       "  </thead>\n",
161
       "  <tbody>\n",
162
       "    <tr>\n",
163
       "      <th>0</th>\n",
164
       "      <td>ID_63eb1e259_epidural</td>\n",
165
       "      <td>0</td>\n",
166
       "    </tr>\n",
167
       "    <tr>\n",
168
       "      <th>1</th>\n",
169
       "      <td>ID_63eb1e259_intraparenchymal</td>\n",
170
       "      <td>0</td>\n",
171
       "    </tr>\n",
172
       "    <tr>\n",
173
       "      <th>2</th>\n",
174
       "      <td>ID_63eb1e259_intraventricular</td>\n",
175
       "      <td>0</td>\n",
176
       "    </tr>\n",
177
       "    <tr>\n",
178
       "      <th>3</th>\n",
179
       "      <td>ID_63eb1e259_subarachnoid</td>\n",
180
       "      <td>0</td>\n",
181
       "    </tr>\n",
182
       "    <tr>\n",
183
       "      <th>4</th>\n",
184
       "      <td>ID_63eb1e259_subdural</td>\n",
185
       "      <td>0</td>\n",
186
       "    </tr>\n",
187
       "  </tbody>\n",
188
       "</table>\n",
189
       "</div>"
190
      ],
191
      "text/plain": [
192
       "                              ID  Label\n",
193
       "0          ID_63eb1e259_epidural      0\n",
194
       "1  ID_63eb1e259_intraparenchymal      0\n",
195
       "2  ID_63eb1e259_intraventricular      0\n",
196
       "3      ID_63eb1e259_subarachnoid      0\n",
197
       "4          ID_63eb1e259_subdural      0"
198
      ]
199
     },
200
     "execution_count": 3,
201
     "metadata": {},
202
     "output_type": "execute_result"
203
    }
204
   ],
205
   "source": [
206
    "train_df = pd.read_csv(input_folder + 'stage_1_train.csv')\n",
207
    "train_df.head()"
208
   ]
209
  },
210
  {
211
   "cell_type": "code",
212
   "execution_count": 4,
213
   "metadata": {},
214
   "outputs": [
215
    {
216
     "data": {
217
      "text/html": [
218
       "<div>\n",
219
       "<style scoped>\n",
220
       "    .dataframe tbody tr th:only-of-type {\n",
221
       "        vertical-align: middle;\n",
222
       "    }\n",
223
       "\n",
224
       "    .dataframe tbody tr th {\n",
225
       "        vertical-align: top;\n",
226
       "    }\n",
227
       "\n",
228
       "    .dataframe thead th {\n",
229
       "        text-align: right;\n",
230
       "    }\n",
231
       "</style>\n",
232
       "<table border=\"1\" class=\"dataframe\">\n",
233
       "  <thead>\n",
234
       "    <tr style=\"text-align: right;\">\n",
235
       "      <th></th>\n",
236
       "      <th>ID</th>\n",
237
       "      <th>Label</th>\n",
238
       "      <th>sub_type</th>\n",
239
       "      <th>file_name</th>\n",
240
       "    </tr>\n",
241
       "  </thead>\n",
242
       "  <tbody>\n",
243
       "    <tr>\n",
244
       "      <th>0</th>\n",
245
       "      <td>ID_63eb1e259_epidural</td>\n",
246
       "      <td>0</td>\n",
247
       "      <td>epidural</td>\n",
248
       "      <td>ID_63eb1e259.dcm</td>\n",
249
       "    </tr>\n",
250
       "    <tr>\n",
251
       "      <th>1</th>\n",
252
       "      <td>ID_63eb1e259_intraparenchymal</td>\n",
253
       "      <td>0</td>\n",
254
       "      <td>intraparenchymal</td>\n",
255
       "      <td>ID_63eb1e259.dcm</td>\n",
256
       "    </tr>\n",
257
       "    <tr>\n",
258
       "      <th>2</th>\n",
259
       "      <td>ID_63eb1e259_intraventricular</td>\n",
260
       "      <td>0</td>\n",
261
       "      <td>intraventricular</td>\n",
262
       "      <td>ID_63eb1e259.dcm</td>\n",
263
       "    </tr>\n",
264
       "    <tr>\n",
265
       "      <th>3</th>\n",
266
       "      <td>ID_63eb1e259_subarachnoid</td>\n",
267
       "      <td>0</td>\n",
268
       "      <td>subarachnoid</td>\n",
269
       "      <td>ID_63eb1e259.dcm</td>\n",
270
       "    </tr>\n",
271
       "    <tr>\n",
272
       "      <th>4</th>\n",
273
       "      <td>ID_63eb1e259_subdural</td>\n",
274
       "      <td>0</td>\n",
275
       "      <td>subdural</td>\n",
276
       "      <td>ID_63eb1e259.dcm</td>\n",
277
       "    </tr>\n",
278
       "  </tbody>\n",
279
       "</table>\n",
280
       "</div>"
281
      ],
282
      "text/plain": [
283
       "                              ID  Label          sub_type         file_name\n",
284
       "0          ID_63eb1e259_epidural      0          epidural  ID_63eb1e259.dcm\n",
285
       "1  ID_63eb1e259_intraparenchymal      0  intraparenchymal  ID_63eb1e259.dcm\n",
286
       "2  ID_63eb1e259_intraventricular      0  intraventricular  ID_63eb1e259.dcm\n",
287
       "3      ID_63eb1e259_subarachnoid      0      subarachnoid  ID_63eb1e259.dcm\n",
288
       "4          ID_63eb1e259_subdural      0          subdural  ID_63eb1e259.dcm"
289
      ]
290
     },
291
     "execution_count": 4,
292
     "metadata": {},
293
     "output_type": "execute_result"
294
    }
295
   ],
296
   "source": [
297
    "# extract subtype\n",
298
    "train_df['sub_type'] = train_df['ID'].apply(lambda x: x.split('_')[-1])\n",
299
    "# extract filename\n",
300
    "train_df['file_name'] = train_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n",
301
    "train_df.head()"
302
   ]
303
  },
304
  {
305
   "cell_type": "code",
306
   "execution_count": 5,
307
   "metadata": {},
308
   "outputs": [
309
    {
310
     "data": {
311
      "text/plain": [
312
       "(4045572, 4)"
313
      ]
314
     },
315
     "execution_count": 5,
316
     "metadata": {},
317
     "output_type": "execute_result"
318
    }
319
   ],
320
   "source": [
321
    "train_df.shape"
322
   ]
323
  },
324
  {
325
   "cell_type": "code",
326
   "execution_count": 6,
327
   "metadata": {},
328
   "outputs": [
329
    {
330
     "data": {
331
      "text/plain": [
332
       "(4045548, 4)"
333
      ]
334
     },
335
     "execution_count": 6,
336
     "metadata": {},
337
     "output_type": "execute_result"
338
    }
339
   ],
340
   "source": [
341
    "# remove duplicates\n",
342
    "train_df.drop_duplicates(['Label', 'sub_type', 'file_name'], inplace=True)\n",
343
    "train_df.shape"
344
   ]
345
  },
346
  {
347
   "cell_type": "code",
348
   "execution_count": 7,
349
   "metadata": {},
350
   "outputs": [
351
    {
352
     "name": "stdout",
353
     "output_type": "stream",
354
     "text": [
355
      "Number of train images availabe: 674258\n"
356
     ]
357
    }
358
   ],
359
   "source": [
360
    "print(\"Number of train images availabe:\", len(os.listdir(path_train_img)))"
361
   ]
362
  },
363
  {
364
   "cell_type": "code",
365
   "execution_count": 8,
366
   "metadata": {},
367
   "outputs": [
368
    {
369
     "data": {
370
      "text/html": [
371
       "<div>\n",
372
       "<style scoped>\n",
373
       "    .dataframe tbody tr th:only-of-type {\n",
374
       "        vertical-align: middle;\n",
375
       "    }\n",
376
       "\n",
377
       "    .dataframe tbody tr th {\n",
378
       "        vertical-align: top;\n",
379
       "    }\n",
380
       "\n",
381
       "    .dataframe thead th {\n",
382
       "        text-align: right;\n",
383
       "    }\n",
384
       "</style>\n",
385
       "<table border=\"1\" class=\"dataframe\">\n",
386
       "  <thead>\n",
387
       "    <tr style=\"text-align: right;\">\n",
388
       "      <th>sub_type</th>\n",
389
       "      <th>any</th>\n",
390
       "      <th>epidural</th>\n",
391
       "      <th>intraparenchymal</th>\n",
392
       "      <th>intraventricular</th>\n",
393
       "      <th>subarachnoid</th>\n",
394
       "      <th>subdural</th>\n",
395
       "    </tr>\n",
396
       "    <tr>\n",
397
       "      <th>file_name</th>\n",
398
       "      <th></th>\n",
399
       "      <th></th>\n",
400
       "      <th></th>\n",
401
       "      <th></th>\n",
402
       "      <th></th>\n",
403
       "      <th></th>\n",
404
       "    </tr>\n",
405
       "  </thead>\n",
406
       "  <tbody>\n",
407
       "    <tr>\n",
408
       "      <th>ID_000039fa0.dcm</th>\n",
409
       "      <td>0</td>\n",
410
       "      <td>0</td>\n",
411
       "      <td>0</td>\n",
412
       "      <td>0</td>\n",
413
       "      <td>0</td>\n",
414
       "      <td>0</td>\n",
415
       "    </tr>\n",
416
       "    <tr>\n",
417
       "      <th>ID_00005679d.dcm</th>\n",
418
       "      <td>0</td>\n",
419
       "      <td>0</td>\n",
420
       "      <td>0</td>\n",
421
       "      <td>0</td>\n",
422
       "      <td>0</td>\n",
423
       "      <td>0</td>\n",
424
       "    </tr>\n",
425
       "    <tr>\n",
426
       "      <th>ID_00008ce3c.dcm</th>\n",
427
       "      <td>0</td>\n",
428
       "      <td>0</td>\n",
429
       "      <td>0</td>\n",
430
       "      <td>0</td>\n",
431
       "      <td>0</td>\n",
432
       "      <td>0</td>\n",
433
       "    </tr>\n",
434
       "    <tr>\n",
435
       "      <th>ID_0000950d7.dcm</th>\n",
436
       "      <td>0</td>\n",
437
       "      <td>0</td>\n",
438
       "      <td>0</td>\n",
439
       "      <td>0</td>\n",
440
       "      <td>0</td>\n",
441
       "      <td>0</td>\n",
442
       "    </tr>\n",
443
       "    <tr>\n",
444
       "      <th>ID_0000aee4b.dcm</th>\n",
445
       "      <td>0</td>\n",
446
       "      <td>0</td>\n",
447
       "      <td>0</td>\n",
448
       "      <td>0</td>\n",
449
       "      <td>0</td>\n",
450
       "      <td>0</td>\n",
451
       "    </tr>\n",
452
       "  </tbody>\n",
453
       "</table>\n",
454
       "</div>"
455
      ],
456
      "text/plain": [
457
       "sub_type          any  epidural  intraparenchymal  intraventricular  \\\n",
458
       "file_name                                                             \n",
459
       "ID_000039fa0.dcm    0         0                 0                 0   \n",
460
       "ID_00005679d.dcm    0         0                 0                 0   \n",
461
       "ID_00008ce3c.dcm    0         0                 0                 0   \n",
462
       "ID_0000950d7.dcm    0         0                 0                 0   \n",
463
       "ID_0000aee4b.dcm    0         0                 0                 0   \n",
464
       "\n",
465
       "sub_type          subarachnoid  subdural  \n",
466
       "file_name                                 \n",
467
       "ID_000039fa0.dcm             0         0  \n",
468
       "ID_00005679d.dcm             0         0  \n",
469
       "ID_00008ce3c.dcm             0         0  \n",
470
       "ID_0000950d7.dcm             0         0  \n",
471
       "ID_0000aee4b.dcm             0         0  "
472
      ]
473
     },
474
     "execution_count": 8,
475
     "metadata": {},
476
     "output_type": "execute_result"
477
    }
478
   ],
479
   "source": [
480
    "train_final_df = pd.pivot_table(train_df.drop(columns='ID'), index=\"file_name\", \\\n",
481
    "                                columns=\"sub_type\", values=\"Label\")\n",
482
    "train_final_df.head()"
483
   ]
484
  },
485
  {
486
   "cell_type": "code",
487
   "execution_count": 9,
488
   "metadata": {},
489
   "outputs": [
490
    {
491
     "data": {
492
      "text/plain": [
493
       "(674258, 6)"
494
      ]
495
     },
496
     "execution_count": 9,
497
     "metadata": {},
498
     "output_type": "execute_result"
499
    }
500
   ],
501
   "source": [
502
    "train_final_df.shape"
503
   ]
504
  },
505
  {
506
   "cell_type": "code",
507
   "execution_count": 10,
508
   "metadata": {},
509
   "outputs": [],
510
   "source": [
511
    "# Invalid image ID_6431af929.dcm\n",
512
    "train_final_df.drop('ID_6431af929.dcm', inplace=True)"
513
   ]
514
  },
515
  {
516
   "cell_type": "code",
517
   "execution_count": 11,
518
   "metadata": {},
519
   "outputs": [
520
    {
521
     "name": "stdout",
522
     "output_type": "stream",
523
     "text": [
524
      "Collecting efficientnet\n",
525
      "  Downloading https://files.pythonhosted.org/packages/97/82/f3ae07316f0461417dc54affab6e86ab188a5a22f33176d35271628b96e0/efficientnet-1.0.0-py3-none-any.whl\n",
526
      "Requirement already satisfied: keras-applications<=1.0.8,>=1.0.7 in /opt/conda/lib/python3.6/site-packages (from efficientnet) (1.0.8)\n",
527
      "Requirement already satisfied: scikit-image in /opt/conda/lib/python3.6/site-packages (from efficientnet) (0.16.1)\n",
528
      "Requirement already satisfied: h5py in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (2.9.0)\n",
529
      "Requirement already satisfied: numpy>=1.9.1 in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.16.4)\n",
530
      "Requirement already satisfied: pillow>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (5.4.1)\n",
531
      "Requirement already satisfied: imageio>=2.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.6.0)\n",
532
      "Requirement already satisfied: PyWavelets>=0.4.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.0.3)\n",
533
      "Requirement already satisfied: scipy>=0.19.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.2.1)\n",
534
      "Requirement already satisfied: networkx>=2.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.4)\n",
535
      "Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (3.0.3)\n",
536
      "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from h5py->keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.12.0)\n",
537
      "Requirement already satisfied: decorator>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from networkx>=2.0->scikit-image->efficientnet) (4.4.0)\n",
538
      "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (0.10.0)\n",
539
      "Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (1.1.0)\n",
540
      "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.4.2)\n",
541
      "Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.8.0)\n",
542
      "Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (41.4.0)\n",
543
      "Installing collected packages: efficientnet\n",
544
      "Successfully installed efficientnet-1.0.0\n",
545
      "Collecting iterative-stratification\n",
546
      "  Downloading https://files.pythonhosted.org/packages/9d/79/9ba64c8c07b07b8b45d80725b2ebd7b7884701c1da34f70d4749f7b45f9a/iterative_stratification-0.1.6-py3-none-any.whl\n",
547
      "Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.2.1)\n",
548
      "Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.16.4)\n",
549
      "Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (0.21.3)\n",
550
      "Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.6/site-packages (from scikit-learn->iterative-stratification) (0.13.2)\n",
551
      "Installing collected packages: iterative-stratification\n",
552
      "Successfully installed iterative-stratification-0.1.6\n"
553
     ]
554
    }
555
   ],
556
   "source": [
557
    "# Install Efficient Net as it is not part of Keras\n",
558
    "!pip install efficientnet\n",
559
    "!pip install iterative-stratification"
560
   ]
561
  },
562
  {
563
   "cell_type": "code",
564
   "execution_count": 13,
565
   "metadata": {},
566
   "outputs": [],
567
   "source": [
568
    "import efficientnet.keras as efn \n",
569
    "from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit"
570
   ]
571
  },
572
  {
573
   "cell_type": "code",
574
   "execution_count": 14,
575
   "metadata": {},
576
   "outputs": [],
577
   "source": [
578
    "from IPython.display import HTML\n",
579
    "\n",
580
    "def create_download_link(title = \"Download CSV file\", filename = \"data.csv\"):  \n",
581
    "    \"\"\"\n",
582
    "    Helper function to generate download link to files in kaggle kernel \n",
583
    "    \"\"\"\n",
584
    "    html = '<a href={filename}>{title}</a>'\n",
585
    "    html = html.format(title=title,filename=filename)\n",
586
    "    return HTML(html)"
587
   ]
588
  },
589
  {
590
   "cell_type": "code",
591
   "execution_count": 15,
592
   "metadata": {},
593
   "outputs": [],
594
   "source": [
595
    "def get_corrected_bsb_window(dcm, window_center, window_width):\n",
596
    "    #------ Correct Dicom Image ------------#\n",
597
    "    if (dcm.BitsStored == 12) and (dcm.PixelRepresentation == 0) and (int(dcm.RescaleIntercept) > -100):\n",
598
    "        x = dcm.pixel_array + 1000\n",
599
    "        px_mode = 4096\n",
600
    "        x[x>=px_mode] = x[x>=px_mode] - px_mode\n",
601
    "        dcm.PixelData = x.tobytes()\n",
602
    "        dcm.RescaleIntercept = -1000\n",
603
    "    \n",
604
    "    #------ Windowing ----------------------#\n",
605
    "    img = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept\n",
606
    "    img_min = window_center - window_width // 2\n",
607
    "    img_max = window_center + window_width // 2\n",
608
    "    img = np.clip(img, img_min, img_max)\n",
609
    "    return img\n",
610
    "\n",
611
    "def get_rgb_image(img):\n",
612
    "    brain_img = get_corrected_bsb_window(img, 40, 80)\n",
613
    "    subdural_img = get_corrected_bsb_window(img, 80, 200)\n",
614
    "    soft_img = get_corrected_bsb_window(img, 40, 380)\n",
615
    "    \n",
616
    "    brain_img = (brain_img - 0) / 80\n",
617
    "    subdural_img = (subdural_img - (-20)) / 200\n",
618
    "    soft_img = (soft_img - (-150)) / 380\n",
619
    "    bsb_img = np.array([brain_img, subdural_img, soft_img]).transpose(1,2,0)\n",
620
    "    \n",
621
    "    return bsb_img\n",
622
    "\n",
623
    "def _read(path, desired_size=(WIDTH, HEIGHT)):\n",
624
    "\n",
625
    "    dcm = pydicom.dcmread(path)\n",
626
    "    \n",
627
    "    try:\n",
628
    "        img = get_rgb_image(dcm)\n",
629
    "    except:\n",
630
    "        img = np.zeros(desired_size)\n",
631
    "    \n",
632
    "    \n",
633
    "    img = cv2.resize(img, desired_size[:2], interpolation=cv2.INTER_LINEAR)\n",
634
    "    \n",
635
    "    return img"
636
   ]
637
  },
638
  {
639
   "cell_type": "code",
640
   "execution_count": 16,
641
   "metadata": {},
642
   "outputs": [
643
    {
644
     "data": {
645
      "text/plain": [
646
       "(128, 128, 3)"
647
      ]
648
     },
649
     "execution_count": 16,
650
     "metadata": {},
651
     "output_type": "execute_result"
652
    }
653
   ],
654
   "source": [
655
    "_read(path_train_img + 'ID_ffff922b9.dcm', (128, 128)).shape"
656
   ]
657
  },
658
  {
659
   "cell_type": "code",
660
   "execution_count": 17,
661
   "metadata": {},
662
   "outputs": [
663
    {
664
     "data": {
665
      "text/plain": [
666
       "<matplotlib.image.AxesImage at 0x7f6514ccc898>"
667
      ]
668
     },
669
     "execution_count": 17,
670
     "metadata": {},
671
     "output_type": "execute_result"
672
    },
673
    {
674
     "data": {
675
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYFtX1xz/z1u0N2F1YelFEmqKoKIKiokbF3hW7qZoYk2hiQWMsSYyJmvgLUaNGY429K1LEggIKgkjvy7K9t7fM749z7ry7sNQFpNzv8/DMu/PembkzvHPvud9zzvc4rutiYWFhYeD7vjtgYWGxe8EOChYWFq1gBwULC4tWsIOChYVFK9hBwcLCohXsoGBhYdEKdlCwsLBohZ02KDiOc6LjOAsdx1niOM5NO+s6FhYWOxbOzghechzHDywCjgfWAF8CF7iu++0Ov5iFhcUORWAnnXc4sMR13WUAjuM8B4wD2hwUHMexYZV7EdLSOwGw/37dmfv1NwBEYs3fZ5csBKWu63baUqOdNSgUAKtb/L0GOKxlA8dxrgGu2UnXt/heID+nYYeeDcCUSf+gILsHAIWVq763Xll4WLk1jXbWoOC0sa+VNeC67kRgIlhLYW/BqIGDABg9sicAjuMwasRYAAo/tYPCnoKdNSisAbq1+LsrULiTrmWxm2DqvK9abQGmfvre99Udi+3EzvI+fAn0cxynl+M4IeB84PWddC0LC4sdiJ1iKbiuG3Uc56fAe4AfeNx13fk741oWFhY7FjvFJbnNnbCcgoXFrsAs13UP2VIjG9FoYWHRCnZQsLCwaAU7KFhYWLSCHRQsLCxawQ4KFhYWrWAHBQsLi1awg4KFhUUr2EHBwsKiFeygYGFh0Qp2ULCwsGiFnZUlabEvwtdPtvF1uqML/zxvPAApyfJT+8lLn/KTg7IAuOfjp7SdjXLfnWAtBQsLi1awloJFO5FDOPVY+ZiWCUCfDikAfPvtQ1z7/NMAfHT1lQBU19Xw01Eny+dwVwD+/uH9QOMu7LPF5mCzJC22Gj06HMSK/94LwG//+gkA97zzIQnlvf1l00H0dZ4eux8X//dmAAZ0vxSAUwb04JvyBgDe/M3RAPjPOm0X9N4CmyVpYWGxPbCWgsUW8flt/wTgsPOHQEGG7EzuINuP5/K7+z8G4O6379EjRKJzYPcLmLdujeyKzNXv6nDfexkA97sSAHzXjwfiO/MWLATWUrCwsNh2WEvBog34AVj+x8cA6BmJye7Du8Gxo7VNsEV7qenw6t9eAOD9l14C4JHpryGavXDeERcA8Pxn9wPikqz/4FkAUo4fu4X+hHXbtI33YbEBrKVgYWGx7bCWwj6NTKBWP4cAuPig0/jPbRfLLsMfHKpBSa4DjdXyObmXHtfSYtg+TJkyh2OOGbqZFjkAfPfoIwD0v+q8dlwtCYCnL5nAxf9VgfHYp+043x6FrbIUbJzCvgLfYYTT+gDQVK0vNiH8WfLi/+4oqeR0crdMmudIRGIoO1maVVXKNrM/JOfv8K6NHj0EMzlNuPKHANzx+D+973t0lriG/ft11D1JbG9cQ1rqfgCM6pLOvb+VaMsePX4HwI9+MZHKmmXa0rwaptLhvrN0scsHCwuLVrDLh70evXWbBtTr5yTd+snrJiU+F4wfBkB2biqkK7Hn0+p/HSVCkVF9IbVfu3ozZcoXjB49fIvtRo8eDUBebTqfr5WlzcoHLgHAueA+4PN29WPVnG/pNvgA+aNJllBO6kkQM+VJTOVD88z2iohLSzRaWFhsO6ylsNeih24NBxAlQQqm69YBv+QrPHTGYAAu378TQbUQllbL7JjbMRWAcEqQtP21kvmIIbLN7rLxpQuluPGUSbMZfckZANR/LsFLqUck+IOtheOYWXsUALePO5YuuXIv1/7rt9t0rtYwz0Y5ExqB/vp5kW73qqCqrbIUtntQcBynG/AU8mTjwETXdf/mOE4O8DzQE1gBnOu6bsUWzmUHhR2GProdrFvz6KtIpCibwcFBlhXQp5+Y0jcP68KcMjGZ//1dKQC162ukeSQGbrkeO1u3ZUz+v4kAjL726tZdaS6DuJrdi6S+cN+TH2bJmie36Y4Sg4LkVLjuqhbf+fXT9ry86kEJ6rOKvLYd59ijsNOXD1Hgl67rHgAcDvzEcZwBwE3AJNd1+wGT9G8LC4s9BNvtknRddx2wTj/XOI6zACgAxgGjtdmTwBTgN+3qpcVW4Zojf8m/F4llECkp0r2lLVokCEaBC36JATi5p0QZhn0+ShujAJzQTZYWFx4jZOXIbplkhOTYN5eOAeC6KcsZ+6vJADR1KZDT7qd5EQXdIE335Utm5OwHztqme5pw2bXe58nvPpL4oq5KP2yrhZCq22RguXyMLN/Gc+zd2CFxCo7j9AQOAmYAeTpg4LruOsdxcjdxzDXANTvi+hYWFjsO7SYaHcdJA6YCf3Bd92XHcSpd181q8X2F67rZWziH5RS2C+Kqq7ztIQDunLGaB2fIejtauVDbaN4CARKzqpkLgsiMCRNOEddkfkqQ9Q0RAK4ZkAdAcpK0P/fthYzrKf+VN05aAkBDeSn3nX4oAFXNcq27zhkEgBN3ueixLwFIUfLyvosPIufa89t533DTcaLTcN8kE+S0WdrKQrBziUYAx3GCwJvAe67r/kX3LQRGq5XQGZjiuu7+WziPHRS2GVmU3nQ3AHfMWgvAQx98AazX780AENFtmITvPaRbHyQLMXn6UDHzp66rIa6/id8MFc/ClEKJgHx/1lqIm0FG/fdOCpceLed4Y6Ww+PtlSJzDH4/uxaiHX9b2Jq5gIK5rwopNolP7sfTjGfQ9+vAddr69FDuXaHSEEn4MWGAGBMXrwHj9PB7Y6yldC4u9Ce1xSR4FfAx8Q2Ja+i3CK7wAdAdWAee4rufH2tS5rKWw1RDzfe7PbueGz0QG7cOZM/S7ahL/FWa8N0uFEAmSTV2SgUzOHC7xDJXNQi7GXLh+oCwb1tZJSvQNH68AILK+FjKVrAzI+Tukh7miv8Qu3D9D+hOvMKZ8CWDyFSbrNsZtp94IwH8Xy89i8YK/4pGfZWWy7dBhi0+iFZbNgk+kn86l5+hO+7PaADs3Icp13ekk7NENMWZ7z2thYfH9wmZJ7jGQIKMvfnwbABe+v4R5C7/Q7xp0GyIRmJS2wXdJeP/djqZEpyczt1y4gVUavTioYyr/WSxuzDeXyEwe8cvYH+ySTm6K8BH5KXKd2UW1zCiW3IGgK3xDE9/oNVOQcBbzGeBQ7nzjfgDy8tQ9WTyf6tniQs08SQRXRo2S6MUpU6Z4T8AEMSVnnsg7158p7e64Qr7s3Y/aaZLhmJon++rWP4bFtsPmPlhYWLSCtRT2ECz5hYiiXvzRUgDmLZxNInOv5dhuGP0S3Zp1dQBjPQRyJfchWtnI4BxxSa5QSyESc6lqkhm/i/IHPdLFOshLDpKiXMLbK8TT4FbU84V6JJoqTYZhjm4rgbX62QROzUBCWuCGQyXMOPbeYjIvfUC/l3yEqVOnAuA4R9G3U1GrczRUNTPmbyIxf8dc0X743V9PIe1QCYN+aqxoJnxZcisA977zeyy2HjYhag/A/531e5Yq6fend9/XvfUkKB3jJkxm4/RoTWAKZkJUTHmng0QqupE4qWnywteV1AEwblgBecmyNMjVUm/ZIdlOXVfDx0WSB1GxWpOIgn5orNNrGZLTxEisJiFOYvqYzle/lwFg6C0SrzB6/x8zdZGUkFv22iQAep12lPTV6QII+Xj7TRIY27AI/vjyn/R8AwDo2204i285AYA/viPX/6JY+hVrquXVWf/AwqZOW1hYbAfs8mE3RkG2mNl9spP54SuGVDRSak0kUqCbdRslkddg2qk3OJIJjuQwFGTJkuGQTqletaYVGo3YOyPMyho5n8mBKG+S7fS1VSQH5fypubIUqVtXSsJi0RoP3pIlHzDyZhK/dtUxZzJUcyquP06Cr6YuKiaYJNWiep1mApBMgFUWxlJ49rEPAFhY/Dl/dO7T7+cBsGR1HWm/FUulUQ2WWJ0sif78gwG8OguLrYS1FCwsLFrBWgq7MT69+ioABj8xC+JGQLSli1F1DrygpGY2zm8waScdIV0si0M6Sfs4sFS1EgJ+mR+CjsP+SjC+vkqCkOZr+DJxl3q1FGJVS/S8Poy78YIREp5yzSAhC4/55/Mc3Pc4AG44TEjF11dU4Fz2xAb3As3f/p9+SqEl7rnjV9x8u4i5LioxGg5BCOnSuHmm7iulrswESGnAVFgEUx5fWIL79P8AcC6+UtsYYRWLDWGJxt0Qx+wn6sXfRiXacP2yBYheDSSWDDE21g10AI1B8JYRmqSa1YkT95OXpVKXCourGqnSJUJ+qpjrl/TryBolNf/zhSgo0WjIwigJwtBIw2eAIwPQ4P5S+OX+I6XfLi6PqVDL2ytlgAn5fQzUqtQhXXVce2AeZz14qp6up55XlaRxcZzWBu2UVz+k9PWvALjh7a8BWFVUAXynLUx7GZwuOfoo/jpSztusA1bn809nH4QlGi0sLLYddvmwG+LcISMAuG2W8fFXkog/MDO1S8LtKNbBsIHDGaYE4MSPvmnV/uYjelAfk6WFyXpMDfgpi4pVUFgj1sCLy8tZUakWiAlG9DItC8lJ7wtAeY0hN98GV6ySXunXAfCtnuv65z/x7imvQLIwj+6ewc91th5xiRCpjDiKxE8xRms4iZoQEyRWw83M5qzHJH/irFrNCp3+NW+9LKTjTzSWY+VSKXz7n2kfk6niMA+ddSAWm4e1FCwsLFrBcgq7EYwLcm2FzHSk/EC29V/ROjIRZM0thOHwIXLcid0yKVQ+4NGpsr4eOVjW99PuPZGF00R27Af/k8jDovpm6tap61KJRn9mErF6sQwyO8j5D1VicnlhOXefK3UfzvtrWyrKJg/O8A0dSc0Q9+NFh/QEYH1DhFfGScCRc85AadZ7MAkXZDvwiBSsnfGNREAe+ZQIvMTqpoEjFoL77g0A3P3aDH73j9vbf809CztfZGVHwQ4KgtuOl4i9Oz98R3a4mfpNMQmvgkkpTuaKY8SnX63E4ceFNawvEu3CUXliLk9Z/lTiAjMkdHjUj0Xi4uNVVTg62MQ11uDE3tmUKPmYE5YBqFiVmL5+4mycQ47eZP9TMyRluS4qS52j+3dibZUsRUzM49AOKYztKvf18xO0sEz/TrBKvQFnqHR8Wt9NXqcl3NmfAVBWXM0t94j34eUFEvpc3ST31lQ9HxNl2TtvHABLZ/8ap2Bz9Sv3Slii0cLCYtthicbdBj7u/OBBAPJ6inDV+hVf6XchEi46kb8cPWwAGSZmIC4zouvAr08V0/y+53+3wfkjUC0E4P+pe66oPsJkJR2/1loPcReSdSnxwZcrAEjPFPLSOWRcmz0/+WhJVZ705WIA0pIkMWnaN6sgYtym4oZ8tyyVXM2tIKKkYmYSHN5dPoeVUC3XOIiczVsMzsFHABCY+ByzKuRaJTVKjDaaOI4IhpRdtl6iIn9yYXe66nJtTcVXWCRgLQULC4tWsJzCboLeXU5hWeGb8kfoNNk2myhGP6JuBz8/QVSXh3VM9dKYvywRYq9zSojrXrql7QtESqBSCLhPbpXZsmd6mNGvyDWWrJJUayc9Fbd8nh60eoOTrGfU0IsAmPr1M9I+3IuPHhFX4TFXGJVmY9WMhWyxbA5VHmFQxxTuHyH3knWsVrNKDYHyF1MnSo7H/FKxXH49aQm1X4mwjNNL8yLixYw7XoKPXn3/Fb1WGfz9PQDu+UCsjN++ZqIdC/FqPHh9G8CDZws/ct1Lt7bxwPZKWE7BwsJi22E5hd0EywrnAcqGNy/WvSZUOY9LR0mp+OG54h5sjLpefYaj8iX0+QcPJaopbYRgJyLPiRbDIQMk9PmAP09h+WqpExHMluCiSEMjMHODg2W2d123RV1HwTVDR7awEAw0p6FDNslqARzdRfqYnxIiLUk4hebPxRJ5fM46TuwlwiwnvLYAgAM1FPqSoV1w+kkOCPFi7wqvffDqBpesB+UqbjpE7uW2D6VIbLQumuiTZlxCBa+uMAKzRrrOuFL3bdhBYbfBCkDj/9GcAxOb4MvyIvI+WCPE4JiCDIZoHEH/o3pKu1ST9wC8okuRM07xdgV/KsuSy8bcAcDy1fMYPkSIuu8q5KXJzEiidKXReZRBx3XlRRqQ13ujXv9zxlMb7fNQU8tx/SROoi4qLtWZJXW88J0sVQy5uaCygc/WywvZHBXy8Sc6cF15Qj9K6yX24qXPP9roEq/9TWITxl13Aqs0ceuH78pgcNux4vL8w1draVpjwjPNtsZTmHr8fIm5uOK59lSw3ntglw8WFhatYC2F3QY5JIg9k1eguQ3hVBZqPsI5vcXMzg77WVsnM/nBLTL+VjwpKcJT50gAz/gzWlyiWmbG9+ZL5mJen4P5Yp6Qj/36SQblIZ1SeatCzldd/TYAt54ilsWC4m0sxNq8kK9KRQ4uqGXjZhTXsbpWXKNL1UV6z/BuTNHIyqGau3HegZrd2T2T0UpSvtTGJU6/YQIA7uVDmbpE7uudL4QofSes1Qv9AcjSQreVxk1Zx6z5IgBznkZWXkE3NiZX9z1YS8HCwqIV2m0pOI7jR5ipta7rnuI4Ti/gOWTqmw1c4rpu8+bOYQFwBGCES1oWgIXLDutBnwyxGubp2r+0McpND1/c+hRNpQz4uYQw1xc/woa47pw/A3DvGJFG++GkJTx4huQEmOKwt77+AYZ469PrUgD+9rHmYnA4+DXMOvbWVtxTEdWNYs10UMJxZH46a5Uj8Kk7PC3oo0Il3x5SLQYModkYpa+pSuXNYS3Kz8eFP2h89VvunCFycL4cycKMlxvLpiPUyzHJeXK/DeunQ1yskzs/E7J19YRb6TbBFkLfEcuH64EFJNQ97gMecF33Ocdx/g+4Etj4F2rRCr7UFOJ15r9D1Yd8StJF4t5Le9X+Yo5/Xd8MXQ3xp+TZupXUV0zUfUmtv3vuTX6s5eAWa+Rfw91jueoZESl5bLL4+HF6UNCnMwArSiVjISVFz1WdBzGjWGTyBmLAOv1sUqxF8SgzfyApqgQ9V7Ug562v8ZYSl2sK9b1fFVKh9+fXwaBMcybS0sPMLzeeA+P58LNhinXy5Q9w6ciRACxZIcuIQQdKHsU3C1ZCXO+52eST9EKqGsLDWqn75sO60SlDyNiS6tfZV9Gu5YPjOF2BHwCP6t8OcCyJ5d+TwD4pcWNhsaeivZbCX4Ffk9AI6wBUuq5r/D5rgIJ2XmMvh+ol1hWRiEsQUze1o8xqnVOC9EqXnIAHlRic+NHdiVNUiglNz4PYaJx/VIjHz2cX0jNHLJBTtcT8yPs/ZvpcmSUL+ki04Npl61m7RJYxpx4+GID3l6k/PyMzIRLtUx3EeAwwFotYCocOFlfgl/PWQYGQfTO1rkSsqBSQ8y3sJt/NnreMC0aKWf/QfBFNqVcX5ivdMpkw1SyrTOBrdxLydIr4VzTFpFYEMXF1/kTJyiuuGEbaHR8C0FxhYh2SvGdVVz4XgBcX7MfKW6UcXcqvrKWwzXAc5xSg2HXdluLZbRWcbTOE2XGcaxzHmek4zoaRMhYWFt8j2mMpHAmc5jjOyciwm4FYDlmO4wTUWuiKBJ5vBNd1JwITYV/PfRih29V4XIIjuQEn9RNSLxJ3vSKuT75xk3fkl7+RqkeH3nGJ7mnGiJW4j4uF8MDbYkX8+JAC5muAUOdrJV8gLz+dM0fIrP6qztC4ZZw0XMLjzfq+SV2IBP2kdxceoEbFXCgrA0czG/2yNfzA8EFd6GwK0So/sTo5jXBA2r39lfw0evTpRpYGZ43IE6PzHa1A9eTnqzmopzyHaeX76X2mkiiLZ5QaHF75ZoX2Q6wvE+kZ7NOB60b0BODP75o6FNkkVLAlOOu6977lqlOED+nSQQrcFpZNZV/DdlsKruve7LpuV9d1ewLnAx+5rnsRMBk4W5uNB15rdy8tLCx2GXZG8NJvgOccx7kL+Aqw9cDbhAklNsE0HTHirP1VKt0oH62oaWZZmc6I6cqeN5Vy6H0/AiCti7jRfE1Rpl0sGgGvLpPKUBOOFz2CCR8s4Y43Rcz1tCMkO3F4p1QemCMcRbxKi7gmFxBVV+Hn68Sy6KNr/6ywn1lzTRUoo5MQxp8jLsyT1bKZWybeglsO6sI0rT3ZoBzB6sXzCBWIS/SK/uJJubJ/J4Yd1k3vT57B6WpFBH0OH601RIZxRZZj8jESloJL06w/APDjn/8HgA/WiAqVf/Iy/nTuIAAe/EQsheaaQhI1McQiaqhczDcz5f7m3ynPNPsn+56lsEMGBdd1pwBT9PMyYPiOOO9eDb+QeMQMDZNEh25C2Bmfvdm+M78It/bR1seHO/KH8VI6LTlJk4565fDpOnkJbx8lxVeG/eNzAGYvLeKZiw4FoEbFTW74aCn1paV6QjWlw0G+VFLQ5FuUqzxbVXMUr2BsWExzJzWZgwvEGz25UK59mCZtnXpEd049/mAAZjw5BYD3v3ybe0dIIdj5GnOxoKKRYVp3AnU/pmkUIxlhxiyUPv7HM/dXAAfoZ1W8Dh4MfWSw+8cbEwB49pJ7AaiOxLy4h+fPEjflGU+Uk3DbGldqDePfF1Jz9jGa1u2paJvaF3s/bESjhYVFK9jch+8LYTGhqdeMyJQ8Tu8r5rexEF5aKgTYHSfuT2LGSuCWZ2YAMP4oOdcl/Tqyf5bMfhl3i4hpLCZWwYrrR3PPVxJk9M8vdQlQ30zCDarEXWUjlZVCeFaaykxpOqPWNECWuiIrxTR3fT7mank5xy/nyvFpKvI150G5nPewCVdL+wlXw9siTFs6bQUAa+qaeeV1SZnur/0/YIgEUNEcI+Az1pRKttEMYfF0jzzwFwBM06VDS1xwuRCmrz41mzVKpJ4+Wiyoq1dW8K/JovaMT5YxxCPMWyv39dl7QtCeeMB5ALy7YDPZoHsZrKVgYWHRCtZS+L4QN+kgMiv3KMgipDNify0Vf3SBrKuvufL4jQ6veH8G44YLiejT9fKrKyp4+EMJxCnoJTPpHcOFwDvqhTmsWa1BTh5JmEZiPa0uSVIT+wK6hlcXY7hzJk1FRphE8woavqYpUScWgBdVx8Rx7meB1mLo/0MRYln/xJtMniRZjIaDWFffTMgn89NvD1ILwbg84y7dlG/I7S1BV8XL1kKTWCDTJt+jVzUyay2wXMjWSNz1MjILioQ8vWtED/41TWtPxlRcxcknEpHrTlNu5uzBYoW9u2Dj0++tsIPC94VGfbn8woAXpIU8IZKMkLD/52qadH63zI0Of+7RDxmq6kSPapr02tVzIVUGihot6HLV66rz2FBJwjBsWa26Sj8bNn8toJ6AqAamahRJJBoG15Sy+3qrbvO5TyX9uvyZSQC8vjrA2D5yX01axi7Z7+MdrfvQN1OWSQdrjke0qpEyXU7F4yacJQ3QJK14y8HAfC+D5Ce6TDpjYB53T5dlWkBXIof3zIZkjQsxpefcGATlurVKxsbi+14IjV0+WFhYtIK1FL4X9MToAe7XWyLo8pMD9FQfvSkFf990MdG7df+QU/8s7b5+WHLNphfV8NyXMvvFG9WtmNIX6mTmr64zrkaxMoYP6c9s9dtHy0yMRAiczMRnkPJxKolmSsmldBaXY31DlLYIz83hjv/8Rz+JxmR+n+FeLPyzS2Sd4bjQpOnUp/cUy6lIoy9jTVHMZF1fa5ZcdRiCdN5HUvlp4JldYMVs+bqnXOvRhbLEOLJfR4+8/ULdrc8uLef8oRIP8tx0k/kZoUCtr9SA1tTYDdTOdzWspWBhYdEK1lL4PhA6GGIyEw3NEzLv24pGTzNh0mKZQUf0lfXtaQ99SurTsob/2cFCtv3347ngF/fdyIMlWu/j2UuBer2I4Qrkv/iLuavI7y16CkVVsqZ3wkEO7Cmfv6sUtjBaH4EKIehGDJRgKqOFQHUjwQ6yL7LVOQGaJJshWZBFJXWU5InL8pfqdqyPxvnb+0KCmsAqdIZe3xBhhZa2D2mQVj0uhgP52z0vA/CvM49h0h+mADDmX2IpvLNKnsEXy8o9fuafCyRLMjPkZ1CO8BGvZ8i56qtrqFIr7bQemt1ZaiIm9x3YQeH7gBOCmPzYFqjgiQNM0h/xJfqyHNRRTFkf8PlKISbvfUcGh/OPGsygDvKj/t1rRuU4jpdUxYG61ZcsEKTISJpranEovzPzdEmRqfEBVa6LkyMvkBmkjDnZrUcWeSqjviB+IQB1FdNJyKcbr4a80JkdTqCqWo4eoS/lp8sqyFThleXqEeiWFsKQn9PVO3CAemAK6yN00MEgU69dSSrmp/voTIk1+Bcw5urWxW97Z8hS55Xl5VyiGpQmJTsSdxmoqeSnDJaB64XpM0lPlyWF8VYcvV9H9jXY5YOFhUUrWEthl0LIQpqqwJFHP0SJrReXlTOokywluqcJ6VemOQczl5USrZakoAmnSC5BdjjA9a8Zt6ApYtIDp5MQda4Sa2lKXtZWNEC9uiKThDgc1imV1cnSj9W6RPD7fRyieQdpQZkzDtF+pQX9RJT1M5GTwztd7S09nl0qy46ze0kfgj7HK2tvZugzB+by6Xrpx2glMMubopif4jO6dDpSlxhzy+sJahzGmkpjkeSQKAMnJOF/fv0Il/zxR7TEp+/9EoAjxt7P+RoteoW6Ot9cVcmXmo5e0WSI1Q74lGQt1kI7KUE/+xqspWBhYdEK1lLYhXA6iaCKW1rMgQf0BBIyZccVZPCd1nYo0Ai+H7/0MQDp2Xk8fJ4kntZFZMb913clEJWgpREHigxZSTRGJ113r2+QGdoQd7VAfi8hKTPCMvv1SAsxS6/fNVvW8NcOyDUcH6WqxHyCWg5fl9V75391ufATqQGfpzCdqgVvf6jVnQ55fi6/HyHis0Ykpmd6mFK1HkxOQyTmEsgXEnSpRiGOXaip3LhkdpVZPlZioi4rSeRsCDF46Z/e5ZLbpfitVykrV/iBQTkpTNXoScMzFNY3s0ZdnH6TWxFzWFskFtlhWn+icP2+V0rOWgoWFhatYC2FXQKRMLvsQJkNR+T1YXKhzEirdLaaW17PLweL1+HHr0puQCed6U7rQZjGAAAgAElEQVQ5INeTOTcaBPPmz6ZqoejXZDgy8/7oR896gT491UIwlkhtZhIBv8yIi1bIbLyoqIaj1SvwC5Vbn1FcS5Gupw/X2dKIvQzPTeWYPjJr91Te409zivhU61senC/t52iNyON65lCtHox8tTBSAz6PRzH7ihoinKMCLR+uEAugtExm9r+c2J8svf7lzxplvxwS+gY6r4WD5Bb8GIDiyqdpib4ZYZ7TjNOJR0uW5AV9OnCLhkEvWmTEXGOMOECsqTnlcg+9O6ayr8EOCrsAF44cD8A1BwjJ9VFhNTF9eRdpfQM3GudhTe99/nypqTBXX679spL4laYZF6+RKMZHb7+GjP2EuLz9jDsBGQCy9QXqqG48Y+73y0zi3UUmylHNZcfx+vGoFn3tnRH2zjFIXXZHjBsgjQ7vhhl1TvhAKmMvrmpkXYMMbGdq5egFugw6u3c2TXqBSiU+U4N+L8ejo/atpDHqLXMCSm66mpiUHvQn8g+CmpIdaQJHXa+aO0JTFSVNpqJ0a+QmB/lME5xe0MFhQHZyQlE4bgjMEEkaxWmS05LClmi0sLDYx2EthR0Go0D3hbcnJUvShftp2TMTENMcc1msFkLxapm5Th5UwPM/kJl/tpJbJ2gQ0zFvLKC6Ts3lNC3RPsEoOMOdr2rMf0Ym43SJYtyaplzbmrpmTtpfAnHMcuDGwfl0U4KxVt1+DQ0R+o1V1eQjRbqMsIqQRFdCmUZK6pJhbLdMmnUmNxaGcVt2SQmpuxE6K3naOSXoLXE6tmg/o1iWOb/Re75xmRR6verVuTx+hvTDnyIkYaxqPbhilfhzhASNFce4YOQQ2sI/vy0GdTtOUsJx/6xkDtalwaqO8lyaSkvoqs/tWJWYW9QY3fB0ez2spWBhYdEK1lJoFzRjMHA6eT1k5lq/VLMNiXBoHyGtlmvsvlnnf15cy+xvRJfgZ8eLiMeDI3vymgb/jNOQ3HuUCDulR5Y3c93/UMuisrI2D+dJ+8MKMjyrpFhdklGdlvtnJbFM+3H3yJ4AFBxcAKpfkKX6C0TjYPQb1EKoeEeqKzF9CS9qZuNpms0YibteSPLrGop9dGcRdV1T1+yt201dh7DP59WCMNmgXVKC9FNXoQmj9rQRmip5RYnRkAZaNdTlQlQslYPyhYydWVrPC5rX8F9a4/LhXb0M1OfmCW9zTf9O3DhYyNUPV4v101Ra7XEgrtIuKVlJ7Guwg8J2oa9u5QeJ38fZSrJNT5aIw8Nz08jQF8G8qI8qkfjFohJvMDhf2fyXlpThmOi5cVLC7eZ88ULU1zWTpAMF/fZv0Q8ZFB4/TvpTH43ztZKTPdNlcDLEWXlTlEPUXC7Qa0bnryegkX5xVUz2HdAJJouAyUGnS9rznGXyXfyuExl3iAwAnUz+c0kdL+hg9sg3cn/Ha1zDqtp6PlR59mO7yKDWJyPJZGR7npf0oI9hGjX5r++MJ8CQfzFml8o9NdRo6nR2KqhXJV8HmF59O5C6iejDayb+ku/G3grA/p2FrHx/TRXD9HkcpNf+cKWPKUvkXtOOFTXnAfug98EuHywsLFrBWgrbjGwS9XTF5M7vkslLWnzFmM4ndM3EBMr94lMp4urEZWb/8urhNKpb7vezZRlxz8VHMPRnZ7W+1EBxBaawCcwTgvFIjQ/4v2+LPQETYy4vUvfg12X1/O4gWc68OU3yBo7qlkmT9nudloZ76cnZ/OlriQdo1ui+zE5yT9e/t4i/GfekEpqxdxcRNmIs6r57fmlCG9HMxvupteTieuXonl4ss3Kv9LDX38HqBp3mV8soVkuhpi87GjHpNsUgRVKbP9Wsyu5pIXqkb1oApr/GQUxV1+RHhdWeRXOLpqN/OGct64ukT3X6IP0NEfY1WEvBwsKiFdplKTiOkwU8CgxEmKErgIXA84jm2ArgXNd1KzZxij0QYYxysC9birOWVDUSKxcX2ovLPpPtJ50geAQAT58rrrIUnelu+3Ityaog+s4bUreA3AIcx5QxU7LLNTJhLdGc+PiOSAwb3YOze+ewXmc2E9dvSsCd36cDCzQa0pRyu+erQj5Vko0ymd1vO3MYTR/8VPYNGKQX2vTcUTB6DKbk7flviK7DzX9837tfM3sn6b13DAe8bMrF2h+/A+epmOs72h9/nszi8dpkXCVIiUmuB6FcTNm9HCVvl9c0c4cpPdcGrnlYMiifO+S3AMwvjVCk5OrFakUEslOJFkuf3lIr5jzN3diX0N7lw9+Ad13XPdtxnBBi6f4WmOS67r2O49wE3ITUl9xLEAWUnKsw6kazgZUbtFvJWYdKIRHDvBvVny6pQR6dJMQXjgwwEyb8HZMGvFksl0hCeh0Iv5JIycENkjxUf/9bfK7KzobEM+x/0OdwuqospWt/phbW8LMjpMDK+X+5XBomGVXnbUfPU48F4Fnd8tUsbv6d1BcuqpdBMOBzOFVVjczy6oVl5VRqHIGRczdJWM3xOFNWynOJlejzbq4FxDOypFB+wvmdUjnxgoM20zutUalek8mLS73yeN+p0M0tw7tyxwx5Yq+qIM3pQ7tsyyPYK7DdywfHcTKAo9ECsq7rNrsytY0DntRmTwKnt7eTFhYWuw7tsRR6I7XG/u04zhBgFnA9kOe67joA13XXOY6T2/5u7k4IQUBj8KNGfmxDK0Hwvy+k2EhJo7q3NHpwdNdMz0IwuOOOX210/FlHnSvnmf5CYmevAzdqR7L421OuOoysG98E8KIMR6hYSWF9hKyLZDlzwYEDZbt2CRSo8EuRipakNEJGfuvz14iF8/kDr/Pn98RS6aEuz6L6CHddKeftNX5c6+MOGsY9b2uU4VsfAHDRfVMZpWTsg1oR+7KVlV5BG1OE5ch8aZMT9nsJWvNLTAxDNUajMU+f6cEdUwmNPnTjZ7MBrrtQ+tMtLcRtM4XkNcupueUNHpn5hUZYXv7q/C2ec29De4jGAHAw8Ijrugchuts3bf6QBBzHucZxnJmO48xsRx8sLCx2MNpjKawB1riuO0P/fgkZFNY7jtNZrYTOQHFbB7uuOxGYCOA4zp4jrh8cADqbEP1ss03T82XGzVKh0uc0S/GRp65po3XDRnt+9oOTALjrzOu45Zk7AJjyqjzubyfN5MeP3tL6gPyBXHT2CgBef01IyIfny+PvlhbijE6mxoP+txsrASC/V+JzufTzuesfBfACkBZVNXouz3U6exfWNXPqn6T6061TRZH5vMcTVk/9828BkHLeaQA8k9eBB+8VIrJSc0FSAj76a87D089L2TtDPHZKDzNvoqREz/zfdAAOPfsKjARdpZKFT58/GPwZbBpi1X3+oZSaP6N/J0+wxkjLDeuY4kVZfqEVq15evRU8z16G7bYUXNctAlY7jmNC7MYA3wKvA+N133jgtXb10MLCYpfCcdtRAcdxnKGISzIELAMuRwaaF5C64auAc1zXLd/CefYgS+FCiBixjymbadiXUMExAPh0Vk3VIJ/S4kcZ2OM4AM4+VKyJO/73X0Q8BGCzj8uD65oMvkR4b/HfJfL/1pdbr4W/Ka+nb4bMiE9NvYfN4ewjxVn0rQqlFursmR0OeHkLS3SWj8RdkvW+jNDrVf3FM/DrV25j+Z+eACBLvQvZt1zJ+vulrHueiqRGG2M0qgnym49XAHCLBlqlh3yknXKAfHn4KNk21OCkjNXeiifoxStHcfajV+o+de3WiVVAMJm69+cAcPCN7wAw84IhlFWL9bBa7+/A7GRPlGbsK1qDs9xYCq9s9pntIZjluu4hW2rULpek67pfA21dZEx7zrt7Qis/RwqBL7fYune/sSxbKqa701HM2sqpN+i3LvNXCbE3f9VH3jHrvhZNxvwhGjWoNRvefeRluuYJ8TboLNUhpBy+0SrSgw7wznHyPyV1u3+21nHQGIbc5CBBv8OmIeNyoNOVxDQp6Ng+Oa1arKlt9tKjTcxFfTROUH2L6+pk8PubJh39Guh1sbgnP7ztRQCOI07euSPlhO/Lc5w3Zx1DTxKD8wrVcjSp5WG/w2GmXsXh2pHkdFx3CgD7d5OlxQ1Tl3PSva8CkKrpz2iMxC0vfOMlcC3SOhfvLyvnrKGyZPlO+zunrN7LwfArURtrVbR2z5m72gMb0WhhYdEKNvdha2GiDQMORBo33S5dKictW7wMAuI2u+sIibQL9x/gNXNdce3dctkfAJg+638JC6FBudmg/Pec+KNzWhzXtuSYwcy3fwjA8WcISZipgUohv8OX6mZ76od/ASBvSGemq4vxLs2M3K9LhneMyVEweRqHdkr1IiZ76Gw8q6SOsFoK2pyR6k6kpgg052GERg02/PMFkq8V8RmuFHJzKMBUIStNrYuQHnfYDadCQVtRhXL9havlPr959AUue2IWAOV6joFaFu7Bjxdx4ngxM0IaHDVtXTVnaeq0yWZ9aXk5n6jATZKmaddVak0I+gKL2+jH3gdrKVhYWLRCu4jGHdaJ3ZpoHAzAQ2fLbP2zl54AlrbRzuQJGA9sfwwJ9thNQipecU+igpGj0+rkd6cBMHrsSL74+UMAfLlW1r1mfXv4NcNhqAQcMU2qQs146Wv6HCkzaMeTdbFd3sDHE98D4LNvpR8LNUsyjsuLmnNgJMcWFtZ4scYdVSiltKaRTkpIGsETI6qanxykUEvGG0m3vOQgKzXDcqFKnR2uFaKOGZDL3c/c3PoxVRRC9gahw+Xl8Oy78vknF7Kj8MyPHgDgtvcXM04tFcOxvLK8gpIfHQZAqSo33zWrkAPVujDh1ue8IpoWDZXFwLs7rG/fE7aKaLSDQguMGiXs9tSpiYrK/zz3LgA+WS0eh6c++8fWnSxwLiQJ0eXOvk329evrff3QX54D4Gc3iCn9j3P/4OkZmhJrLdOgTaGV15R0c4Ez9OVbqwTftxUN1Cmjn6aCI2uVWU/y+5inMvHfXCI5AtOWlzN+8jIASnVZ4PM5jFGVJ/NiNCrxGHNdz+uQrP05uEOKJztvkq9MGvQnRbU8fKrEQhx3n/EMtEhv1kK3X//8Xwy9XdPGO3bd+Fm2E5OvvZ9TX5DB9LWzRSn7uMc+44wjpIL208fK/8t7qyuJ6z2c1F2ebUwHzQP+M5u1yw3BPGuH93EXYasGBbt8sLCwaAVrKQAbPgMx7WVGIajKxpEX2BYkd7mabPXpr1389022W/qy5ARccMdbng6jIcqMAvJbqyrJTZJzZauQyeF5aazXaL4ytTCcFp9NWrARN3lndZWXe3GvphgfkJPMFR+JpfBNhczamUG/l0VpCq8elivLmIWVjR75GFL3ZtfUkKdBafr2iQqfBHyOd6yRhTsqP93TqjQFWu4+ri/db71qk8+ovXCcAcAC/atAt2tbtDDZlakQEpGXw3qJ9XDjYZJF2jk5yK9nSHr8p1+/o+0X7qwu7yxYS8HCwmLbYV2SLTBlypQWf6nbMdJm6sZmILNxTkqQO4YVbKEt9DlOLJLPF6/lz5+LbFutxuS/qFJpQ3JSqFWuwLgLI3HXq59g9pU0Rgn7ZJzfXy2EkM7QI/LSvGzDv2uwTqfkgDeTm0pVSQEfPdJk3Z8ZFKvDZDA6TsLt2F/zBUoaoh4haeo9GDLv0E6p3uch+TIDf1Ne7+WCjNJS9Jndt6DhUKHFZrPzN99uQ9SbyNAFLXaubaPhV4mPqmEzY6HkZ5yjxkAo5RiyO6rVmKqTbd0eZylsFaylYGFh0QrWUgCOHXs2AJPf/1+Lvd9tsN069OwsHoyc5CBjVD59s8iQPIHlFfVeBakFmnNwis6gc8rq6ZIqs7Fh9ueU1XsBRGpYUB+Je2pCwzrKzLywSv6ubo4xUnUMTABSl9SgJ7pakJqo62iuf5QGIX2nf4d9PjooH2AKxyYHfF7dxaXKLdTqd/2zkrhzuEqkKb+yrKiWJXo+Y7lkFtdBjeYYpG9gNXz6MX3HiQdoyYInZF/Hzpt4mBsgRcK0Rw06hanfvLl1x2wCzfWTWb9qcrvOsafADgpsOBi0D727SFRiXTTO9OXiPuy5Fcf97pNV3ss3WmskzFYV40jc9VSOvZwAn+OZ68Zl+NaqSn44QDRt3taU34Da+/tlJXnH9tE4hJpI3FuiGBfjgOxkj6Q0RWHfXy2p0+khH6PV5HfUyIzE4x4xaVIrhuiA1CMtzDK9Zj8dwAJOYlDyCsfisv7uZwHIaxHLAcCIkXTtIgPKqaMl5fwvv72SfheKoNf8ryRm5MCuYZzc1hqNkz+WZcOUuW/Acmnn9L4MgIy0ANW187RlKRYJ2OWDhYVFK1iX5A5Ghx7XAnBghxSPSLvzzQmbOUJM7qGDfk2WRgmaROg5Gml3VH66Z6KbjESXRHCTSf0N+hwvkc+IoJjj8pKDngVwhEq0raxtordaDcYNmhRwvGhFE5RUqiXoypuiXpDTmb1VBCU56AX8GAvgoA6pXh/NEmeFLi1Cfh+rNQLSKDGf1iObT1QS7fKrj5R2x43ezDODVZPElO9xnKmVsWnB8Ccm/Jvxt18mf1Rqu2ff5WeaXv7YZ0IYNtS9tNlr7gWwLkkLC4tth+UUdjDK1om7b1pRihcuvDmUviTFW0fkpfGt5il8ozO0mdHDPocSncm76czbUtugQcOis1NCzFQewsz2BRoAVdYYpY8WkzVh1BlBP6WNMrubkvWNMdcjH9MCYrPk58iavqwpyn6ZqkugXEF9NO7lUhix07Eqz/5lSZ1nRRjOoro5RsBYPSYQyudQqeTkz+6RYK5zX5Gw5DE3nApBdQ93T4jWdu9l8ic29xMWF+ZlE67nsgkiYe9ZxheOIe9d0aM442AR1v3vx5s51T4EOyjsaDRP1w9HeAVZNoeP3xQTti4a90x4Y3IbIZMVNc0ckNW6mnRywOcVkz2tpzD2r6+oJE2PCSvrZ6pOpwR8DO0gBOBkTVxK8jteHIOJjeibmURUy9u5uhap00HEh+PlWfh08RL2+1ir95ni5WcIyZkZ9nv1J8zgMDAnxRvgzOBT1RzjTa3tYGpBvKXVrb+96Vku0IK4Hf+gcQqxMPQWURa3WjQdnYy2PBIa30AqXvG9Wq0dkZnLEh3YTIQlgQMhuu+pN28Iu3ywsLBoBWsp7HCoeyslkzE9sjffFHhPy6Qtrmr0ZqxU1To0BF+XlKDndjRxAkurGxnVReIITDm44oYIB6k70GRJGtGSfplJzNKS7ul6/qDP8dqZWbN/dhJzyoyIjOMda/pYr5GVXVLEmhmQncwKJQ5NnILpfzTuUtiU0HcEWFjZ4BGeJvNzVW2TR4gadNIoydpI3FvifHLVYwCM+/cvOGfIFQD8+6U7AXjlz//mjBsvb/MZQ2dwpB9OuhSudd0ITzwmmZuv/P5lACb1HMX8JdZSsJaChYVFK1hLYSchLSNMdSS2xXYmNyA7HCBfZ8fGmKzhjUrymrpmz0JoUoshOxwgop9NluLAnGTP2ihSK8Os8yNxl3rlDUx0ZElDlIBP9o3Q6MWShig5mu1otBNM0FN2yE99TLMjlfdIDfi86EYTYGX6c1DHFAyvZ/iScErQC3Yy5GPchc7ap3S1XIwVkRnye5aFuc5d4+7mxTmPy4ldCaw6/ZeX4f7yMgDmzhIX45BDTF2LJZ6r9pCC4YmH30cyIY2l1TUnGWsn2EFhp6F2/Xre+k5Y+Ks30868XHWRBCtvmHhjUDuOQ8hn1JPl5RqQmcx0LbHWXROYgj7H8yyYuICTumV6fxsT3qApHqeuXq41MFte6CXVjR5BaiTbu6oHo6QxQqp6JMxg1hSLe4PGQB0UDLnZFHO9QckkUlU1x7w0ajMI1kfjXpKUCVgx5GaPtBBmaO2k6eOPflfCoGtFZ3LcX06WL1OTvSc2eJiSkLVCNDppiUSqmWs3VuI2Zewqm2O8F9LzNb+9Ubt9BXb5YGFh0QrWUthZcBcxu3jLZcx7aYLTrJI6TyDFiJUYeTZc13PVHZYrsQvzKxo87URT4yHs8zFL4xQGqqBKjc7okbjrpTivVksgPznozcyGQKyNxGjSmb63ti9V07+mOe7N8ob8S/b7vNRtI/3mJW+lhfhc6zgYQjPkd8jS+zPLpLjreIrKZl+W/v11WT3Ha9zDosp671x3q+DJuArpB6mm+GwLpOZttGvM/qM22pei18oK+cnsLPkTVSuT9NvNKHfvpbCWgoWFRSu0y1JwHOcXwFXIUvAbpGxcZ+A5pAbabOAS13W3HMWz16GBwsqNi8ZuiMpmmYXTQwkZtBLNIWhWIjEnKeDlPJjMxcqmKL0yxMowM3nnlKC37jYzeoOZecMB1ilhZ2bj0qYoh6vIyooa+S/KCgW882lGthd4lOR3vPRuc1xdNO5d0+RgmLlmQWUjmcoVmIzOnHDAcz8at+aKmiaPhzD3bKyOnKQAxQ2t+w0wWy2Q2reEGky7dhAbQyyL2yc8wh0TJPty0sLVG7X6VgVt31xV6aWmN3Q9BYBFa/b6fIiNsN2WguM4BcB1wCGu6w5E8njOB+4DHnBdtx+SpXLlps9iYWGxu6G9nEIASHYcJ4LEka4DjgWMeP+TwATgkXZeZw+EQwxni63O7CnZhi8uK/fyCcysaSTT0/x+unvZhjKDdkwKosS+F3Jc2RQjI5QIHYaExVCQEmSJFlQ1FZ/8PoevNKDJYFVtM0M6CB9hcirMzJ4c8FHheUZk37LqJk+araihdSZnfTTuWRnGyxKNuyQH5GdnuJNvK+OeK3WG5k8crtyJ44igDOBdu6wxSlStmcUqeX8QMRL5pWLNEBULYMLYwTR9JjU473n3aTaEEZgpb4rxqyHiqbj61ekbtdtXsN2Dguu6ax3H+TNSWboBeB8RxK90E+WQ15CQz90KBIHI9nZpN0M6oaQtP948LT7iLnM95WVjOhsXZWbIT43GGBjyMS856ImaGPddJO7SR5cUKQF5gcwLWtYY9WIASjSGYWiHFEqUMDSDSO+MMHo6aiPSLtdEFzbFvLgDs+wpaYzSRwexDD2/cUNWNEe9WAujp1IXidMjTfaZVOtOSQEvj6OLKjSt06IzEdf1+m0GSRc8RZfrtOzd+yPeI3mw1tXQSE+Cmg9x+AjueXcEm8J3moh2bu9sL4nNbSzZZPu9He1ZPmQD44BeQBck6+SkNpq2qZXgOM41juPMdBxn5vb2wcLCYsejPcuH44DlruuWADiO8zIwAshyHCeg1kJXoLCtg13XnQhM1GNdgN+ffQu3vvKENIgtb0fXdgd0pLlqy+6soAb8dEsNe7UXTKSfIQZzk4MsrTZSamIJlDREvRnZBBn5HSeR0ahWhMl0rI3GvBk3SWfZpljcu0Z+SsKllxSQ74saxHow6ddRn+ORm+VaE6JjUoKYTNF+mHyLrqkhr6Sc6TcklhJmeVJUH/ECmYxuoymr5wfqlWA0SyFHOu9dH+Cg37zjyczdMEiWAGMmai6Ek8Pm8NPXJU27b6cchqpAjMxx+yba45JcBRzuOE6KI/+DY4BvgcnA2dpmPPBa+7poYWGxK9EeTmGG4zgvIW7HKCKePxF4C3jOcZy7dN9jW3vOW1+6fXu7sxsiBM31W2yV1lXWsHUtZnJDBJpZubI56rn2DOmXFHC8GdrMljlhv8cNGJi1W0444AU7DVcSb3Vtszf7mlyD7mlh77x99frG6shPCXqchuEqcpMDXph1s87oTbqNuS7Z2u+odiQj6Pc4k346s1c0RT3OxPTDuF59TiKwaY0e53MA3dfsib8mnocJE2eN8gLd2rYUKj+QkOdY4yQAFq6u4KynJFCKwNGyjbZU8+6u21rdlrM3ol3eB9d1bwc2fJOXAcPbaL6PwY9HmsZ1cPClbNxMX65OyUFP6MRE85kEoOZYHFeJdWNe90lPojGqiUrK4jdEExGH5uU1QiaRuOvFAJgXOjXoIzmS+N5sayOti9SaUnEVTYnCL+bFzg4FE94MbWfyI2Jx1xN7MSZpRVPUi+IsVpIz2uKaJnfDLKFKGyPeZxM5GXOhk5Kypn1DNO4NKF+XiQfjrNUqstJtf9rCP/5uyr+ZFPcKQEVYom/oPrOsygdk2XPcQKlAnpudxX8/fka/X9PmNfZE2IhGCwuLVrC5DzsNLiYmcNbjMusMu+q8jZupRFrHpICXk2Bmd58jxxekhjwJM+O2/LKkzpu1TVm3yuaYt686IvsyDAnpc7ylhyECs8OBVqnbIFaEiRv0Mhz176DP8dykxmqvjsS8GAoTu9BQJ2folhbyXJiGLEwL+rzitGq4UBOJee5Gc968FhmUJm18rrot+2SEvSxQYyXlJge8vhmLpWiaFM/NH7FxvgPA49/p8iLQS7bRZW20Mi7yRCTkh/OW6Kc+kDZaPtZ+rvuWsKfDWgoWFhatYC2FnYY4plrpS/+T+PxhbVVb79EDgIDzlVcUdnVLQg0h08wsb8i2gtQQ2brGNmv/uBv0RFjMbGkIvoUVDYxVbYXp62r1O9ebaU37wvpmuqsL0q/XNLkHeclBT7ats7owkwM+LxgqqBaAyR8oa4p663yzrYvGvapVBp1TEpZQY1Tuz7g8yxqjVCk/Ylypsbjr8QsmmjMSdz2rxFg46RoY1ibmL/QCt4hub6HYKoJ6Kzm5knuxvnjPtxTsoLDT8CXQG4DnFkjl6nvaatZVUnX3y0xinsYpGJPeRAM6Tpy6iElKSkilV+spDHGYEw6wqs6EQct/rSHwgj5nI/GU4oaINxiY5UNNc5xczRo2HgDTpksL74Mh/2oiCYIv3CL+AaB7WoiqJkOWSv+zQn5vqWDaFTVEPOl1400wqtS5yUHvJTdCM+khv+eR8LfwjJh+mvapV5228fNWTLz3FSINZmmwrZXFBScPPZ8D84Wk/NO7D27XOXZH2OWDhYVFK1hLYaehEhMVV1K9uXgFMcPDQZ/n00/2G5ehzIbfFTeQ5EUvyr7sUMCb8Qs1KjESdz1S0LjqTBLRgdnJrKlrnVeSEw54yw1jWYR8jlcubpCa3+AfRmoAABl5SURBVCaGoDnuetaLQbiFBFxOWJYdWaFEaTsTHRn2J9SlDSHougmLZUNS00QfxF3XW0o0az2KsN/nJY0Zi6Ux7noFa0doSbs2XcCKX3ywhEFa1u+L4u3L7L9kYAEXvvKN/lW1XefYHWEtBQsLi1awlsJOQwqggh1RM/+ZXIikjVrn7NeRjz6ScundNEKwSDMFu6cnXHAGwYDfIyQNCRnwOV6ewvr61laBz3GI6brdEH2RuOuVoWsZxRjbwD1oZujihohX08EIrVZHYtTpsSb1e39NpV5W3eRxBUZAJu4mSMdva8QiibkiJSefxSowQVpxElaMScN2nLjntjWWUHbI75GwB//ugg0fbwLVUtavvqyGksyN/x+2BVe9Phc3ZubV03VrIkrfaOOIPQPWUrCwsGgFaynsNByMsQjiNSLFzhwNjhkyYOPm3TK9gB1TI8Gsqyuaot7a36zXS5sSWZKGgW+KuTSoBLzRKti/hUaDya0wOQodkoKeB8DwB02xhCaD4RJMv/yO43kfTC5GYV3zRrkJpj/pQb8nRutvEb5coftMlmRTLO7pMxi3o7GtAo7jaSu0zI8w1oZ5SB2TAhzRU8OVMzZdmWvmi1PlQzTCmqL28QB11c8CRhw2Tbd7frizHRR2GlLwlgkZQni998wUAMa2NSh0zvBeRkMcmmIyDdE4ucnyX2UGgqrmmPdimBe1LpLQMDRmvnHxNcZcMlWVqSBVrpMW9Hs1G0zF6J7pIa/obKfk1j+PtXUR70VeqcuZjJDfe4GLNliy9MnweQOKcZvWRGI06ABXpfe3pq7Zi4o0yxiTLJXk93luWJPmHXddL0Xc5FH0Sg9z7RO/Zku48eHP9FMlkZo2pT62Ees32O75sMsHCwuLVrCWwk5DKp6bqkEe84ffSNbe2Laa9+5KRkjEPkx25Lq6hOCICcwxy4iKppg3oxtC0Ock8iCMAW6Clzq2kIaraBFQZFx7plZDzE0ELRliz8slqE8sQczMv7Yu4p3bnMOQkEGf47kMzT1lhvyeWnWSzwQlOR75adyyIc8t62OlBl2ZazZE456uorEYLrjw8LaeagtIu6lfG/GeLHBnbOGYfRPWUrCwsGgFaynsLGRlQqUSjBFRpHt2kYbEEiGRp68I57JcJdcMYWfyAbqkBL1ZcnWLUGVTByEnbLIIm7zgJsPD1TRLm4E5yZ7IitFOqGpRANcEILlugqMw5zLaCR1a1KI05KJLYgbvnJxQRQYJMjKkpiEfY3EIBE1ehvSjIDVElp7b5FkYiyfoc7zwacMtBBzHC+wqVBIy54zj2Bye/MNT5k51m8kmlAL3edhBYWeh8jPwa4GS2DoAik1xmBlfw2GHbnBAkG79OgLgWy6y5cYsD/gcT+vQEyHx+1ilA0RDSoLZNyXZTO5AfVSOa4jGNxJxqYvGvRfziE7Cnr+6osJbItS3UIkGWFrTRB8l9kzcRNDntFq+QCKKsaY55iVJmQrZaUHHG9hMjERhfbM3eJiYC2PC1kZipAVaezf6ZITx69Lj+UcuZmtw2S3P6qeQbj/equP2Rdjlg4WFRStYS2GnYSE5nUXco3xNGQCRcsnG++sf3+Xn/9vQUoCsy44HoK8WT90/S/YXN0Q9098sB6piMQZqbMGsEnEn9s1M8rISzcxsCLwVtU1eXYbaaGLZYJYepu5Cz/SwF+NgYMjKZL/PE0tJbuEONecw2Z3GbZni9xF15frmnMkBnxd/YSjRZL/PO8aQmuZcGSG/V8Y+T9O1+2YmkWvUoQe2VS6uNSbe+A9A/g9IlVR16vYeF+KOhrUULCwsWsExsenfaye07sPeB3XRdR4PQOU6iXZL7diZ2pLHN3lU9LEXAPjTG6IkHPY5LNM1vIkGXF3X7JWlL/QiCRMZiwY5yjGUNcXQpb4nvJIS8HkRhKYcXeeUIBUaXZi/QSn6zFAiQtG4HaNx1+MSyjfQX0gP+j3Xoul35xSzpk/oL0TjbsLVqtfuqfkfA7KTE65ItVLG9ulAr7t/uMnn56FUrAOn0zHg7yf7Yi9v+bi9F7Nc1z1kS43s8mGnQqtHVy0CIJAjoit1pWuo+GAaANnHH73RUYFLxwDQd6r41N9cVel9Z/QKo67LvHIx+Y2vfljHVMo0QtGkVZe18CQYE90UfkkPJlSTShsN65/4vsTTcjRFZHykxFoLqvTJCHtEpBnZjaBKYyxOVbOWlFNyM+x3PKKzUds1Efd0I81AZJKygj7H68+oAbnSjxsu3eiZtQUn/3z9lATx+GbbWiRglw8WFhatYC2FXYD6erEK+nQbDMDS8lqGjH8CgFWFG1sKBDsAMDBXRVoao16U4SytEp2fEvRmfuOyK6xv9iIHTaSicRemBf2eq9GkVTeF/Z54i5mNHRyPkDTnqFZyMy3F7+UymBiGxljc02Q0hVpNfsaaumYvtsEQpZ1TghQ3RL3PoEVp9BgjwGJiEoI+h6P27yT7ttJCGHf4DfJBXcEED4CILVS2tbCWgoWFRSts0VJwHOdx4BSg2HXdgbovB3ge6AmsAM51XbdCa0r+DTgZCR27zHXd2Tun67saJgIxstlWm8PShRow4/Ri9TqtXlSs9QRyu23U/oBbzgBg0tX/9lyAwRYKy0uqhXwcmS+l19fWNXszvifw2iL3wUQJGsGTjKCP+RUyu5soxK6pQY+sNASjybhcVdvMAdlJrfrRHHO97EzDFRhfY0444PU7PZTof43hC0yYIwkOIcvjHqR9h6QAqddvWoC1JT7789MAvD7DBCZ11JNX0p7/t30NW2MpPAGcuMG+m4BJruv2Aybp3yCl6Pvpv2uAR3ZMNy0sLHYVtmgpuK47zXGcnhvsHgeM1s9PAlOA3+j+p1zxc37uOE6W4zidXdddt6M6vKtx+y0PADDh9z8HoHfHoSwvm7OdZ9Pjsg+C8hUA3HLtvwG465XbNm6eVQDAT28/mQcnvA3g6Q40RONeqLHRVYi5rscppKToTKtr+kjc9bIeTXjxsuomL0fCrO+j8URYs3EnGqugKRb3PAsm67A+GmdVqQRPGS9IlxTDOyTmHMNnxFyXTupBMedKCjhe/UkTim0Coo7s1wFCmxZNMaiY8gkjfvW0/qVCrE5v7eoLWzy+vbh5/G8AuPuJO+XSTninX3NnYaviFHRQeLPF8qHSdd2sFt9XuK6b7TjOm8C9rutO1/2TgN+4rjtzC+ffbeMUhnU5GICZa2fJjvJ1OB26tPOsAyBwoHyMSnq1677FZsfoYtFv/PX4JwGJVFxb31qFuKo5llAsMrqNumTomJSoOm1e8ribEC4xZn6/zLBHGCYGEfmBr6+PeEVYTHHYuJuIeDRJTQdrKbzF1Y1ezIIpd7eoqtEjKbulJnIfTM6DqWB9VL7EYBz88I8wWpdtwV0sasq+AXe0KOqSqlvzE31vk8fvKCTeI1lyOU5w042/P3wvcQpOG/vafOEdx7kGWWJYWFjsRtjeQWG9WRY4jtOZRImdNUBLxqwrm8hPdV13IjARdm9LYVbhBjxpTmeCSRI/H2lcuZ1n/ZZg6hA5R5XMiGMG/pxJ8x7e9CG5fQD444vXA3D3RQ97S4MlmnKdEfJ7uRFmmWHcirXRuLcvoBmGy2savTwII/dWG4l7Zr+Z/ExgUWMsTq5f2hk3aHM8TkWT1mBQctBEX+aEA56gS8tCtoZfNBGKPdPCXom68YfIkinzpgv1xjdhJayV8my+QXfJ39GVgJaJ8/eU7S6IXrz9ut+3+nv0gWN2+jV3NrbXJfk6MF4/jwdea7H/UkdwOFC1J/MJFhb7IrbIKTiO8yxCKnZE1ClvB14FXgC6A6uAc1zXLVeX5MOIt6IeuHxLfIJeY7e1FAxGHXkyAFOmvwWVUsLcyc5t93mdDpcD4JYVMvMNIauGnXLMlg+sKuXX50v9wqXqmnRIBA4dagKfNFBobV0zmRqubArIrq2PML9cNB5ykuS7muaE1Jk5l5ntG2LxFrJwMsv3zUhilhKNnvCK/m/mJm9siGaFAh6BacjH9KCPK047AIDARWdu+d5L1xPufSMAzTWmoKsP/F3lY8xUbVqw5XO1E4n3x9Sk2K1Df7aKU7AJUdsI140C8mMe2UPSn6ev2uK4txmIyZuacx515YvlGrH35avNlD0DoFmqR3/4i0f17xjHHCuMu39YXwC+e0bUi38/eRkj8mSpYgrGLKlu8qpIp+iSYXl1k/dyb4gkv88TSDFxBwOykr14CSOCYmTlG2JxzxOR7MnROx4JaiIhz/vhCBgxcvP3CrBCiESn/23QVKE7Vbgm3B2adaXqTtnyuXYAJr80idFnHQvA6J6yHJy6cu4uufZ2YqsGhd16WLOwsNj1sJbCNmJo5/34qtC4vtRsd9pXfkxwKKagSChJCp82Nby6A86riNTh/u8DAFyVhfvr+0tYoTJvhpBc3xDBZF8babceSlCWNcW8HIzK5kSkpPkJLVWCcWC2WD9hv+NZDYZIDDoOI9TdeMDvz5YD0zfv4v1u4ovS/tondU8ZnrsxLMVk/eEYsernt+ZJ7ADItV23AirFYnGyc3bRtdsFaylYWFhsO6ylsB1wV6lDpVs+AK/dO5HTb752B5z5VN2KfkJKisyodXVv74Bzt4GmWs48ViLwemjQUF0k5rkPm9R6MDN/3E2IoJh8h6rmmJcbYURWhqsIbNDneMVmTaDS0IM6k3zNWdqBzQX4CD8x+Ud/59gn1S3cYLzbcQiJdRFIVqGWqme27d7bAbdJVbpDaS2sxKZNtt+NYC0FCwuLbYe1FNqBls9OEkcBKtpuvE04RberZBMswG02oSA7J3z2tcv+CMCc8novWMlYDF1UQi2O6/EHxjU5u6zOk1LrqtbAEA1zPrlPDgNO3l8OOGaEXmkLHpX6agDOH3s3AM9PXwiU6pfCtfhy8kgLqdZD0RPbdqPtwG8vvRmAPzwpfXvxgb9z7g0/3WXX3wGwLsmdjZNOugKAt99+DBDXnuMk74AzqwEXUJ99tAyQWICFH/4FgP3GHLkDrtMGKotY96935VpLROOwUMvX1UZiHmFoalIsqWpi3DHiBu17mUbzpedvx4U1KjPzKgBqqjWlnIAnOuPvkAlArGQhxHZ13YZsXLe81R7HaSuqf7eGXT5YWFhsO6ylsANQs2g1af0kmm7KExJvf8zlZ23ukG1D8tmEQmKBNFfJDNo7vydL59wj3+duz8y8GyFWj5N8gXyOGJFaIT59mV3o3VlEZJZ8Z8jEHbFE2za4bgwzhzpOmu6t2+X9aCespWBhYbHtsJbCDsKGz3F0v1FMXTJtB15BchnCnc6V60XiNGsORmaWiJBMmngpw845YQdec+fik6fF1XrUJXdiQsdBCNucbpItWb7uO4hO/R56J1g+VwLVeg7aj9HHSubm1MnPbu6Q3RmWaNy1EMVh1y329jiOagSakmU7FD05cIDENRhvQdGKCtC8hR7dhJS7/lDJZB988iDGXGTSendEBOb2YeFbn9H/VEn8wi3RvV0hTZZAqSZeosgsFRp3bQcVkx8WFafRP7kIgCkfTuGY47ciUW33hl0+WFhYbDuspbCDMWqkaNxOmfaOt2/nWgxgTO7sDsfRNV9m3BIt6FqkuQ1JAf//t3f2sVlWVwD/nVBaBIIVEKxUPlxwfIlgHYGxhDJh2E5xMqOQJpBhRlhMxtgSFfsHLwluEJkDFgU/pkzH1xQVhCkyaEnQUVazrSvQDhA2GVDGUGQyCYyzP+594X36RUv73velnF9y8/Cc+7y9h9On5z33Pvc5hy9r3FuV8dQ68wsGMKBwCADf/c4IJ7wxt/XUqtjL9NkrAHhl204vPMvFZCiZLroqGNaHD6tdmH7q1DutN/4V8PBDLhfnmrUuNyc1/jX5m1r+mnwaYJGCYRjNxyKFJPHcrPn8YHFxRJZ/u9twtL3ywwAa+EKunVwEkJWRw6De7n2BL3yi1XMXlCO+jP3Z0z6KOK9kdnGLmnf1cGsP4/NdcdZ2t+Vw3629Adj9qXvTct+mD1i4zSUz+fLzM37s+K7LMyBuB+P1Xd1iaOcuWReTq1Qd8AuxF5OipJapk3/Mr1f/3J+5SEsks+EPXH3YQmOqWfvYAgAeWvh4RF763nbGFuSnQKPGiN/8OZDRDwDp4KYiesH9EbfrmEWfbi70//iQ292XcV0m1/kK1Gf9vZTlFztPn6qB/+zzP/eAP0YzUKcD5Tt2AZA3+mvEU9eL1J9o5irHpg+GYTQfixQCMGaEmzaUlu2o0zfxWy7RyDtb1gXV6VpnzKBxlO7eEhWePIl065YahcJgkYJhGM3HIoUUULPnY3oM7FdLquTf7jYXba8sCa9UG2fMwPEAlO7Z4CWXNnDFZsQAmPfivMBaBcciBcMwmo9FCinDbWjSeN2CztfXuaJ4qkvx9tPXXgimVVti7gz3SDj2/Pw6fWVlFYwceUdolVKNPZK8uuiOnvBZorvVzQxc+vYHAIx94NteciqQXlcJ7XtzsMRlp+o7elid7tJ33Y7KsYWjgqqVZtj0wTCMK0BVG23Ay7gCspUJsqeBKqACeAvITuibA+wHqoEJl/v5/jNqrW4rWfW+lqx6XxtiyaJXdcmiVxU6+pZ6ncO0G3Xd8vW6bvn6Bm2jqvrUgqX61IKlaaBv2rTypvw9NiVSWIGrDZnIFmCIqg4F/oZzBIjIIGAyMNh/5jlpo1vDDKPN0sRv8r4kRAq1+h4AViZECXMS+jYDoyxSaHkrKpykRYWTVPWsb/VzqKRcD5WUa+HQcVo4dFzK9W5pmznufr1QWaUXKqsajQr02DEdkZunI3LzUq5zGrcmRQp1ywI3n+lAvF5XL2BnQt9hLzNayMrfudyPKyXromzuzO8DEFv2Sy/Jok9+HgCb/lJrtx7AZ8fc9YvXAPCbF3/LgSN/SJLGl6d9h8EAPDl7CrFZU52w5y2X/+C/j1M0xT2ZWbWlFUvrGQAtcwoiUgycB+JpcurLea0NfHYGMKMl4xuG0fo06ZGkiPQFNqrqkATZNGAmcLeqnvGyOQCq+jN/vhmIqWqjX0f2SLL1GNxzOACxmNud9+DM+xq7/DL4VGhHatzxwEl2HnHFWipOulenT/z3HNm+BsRXurgoJq+7e/W6e+9suM0lUiGjuQVYXYq5WOwl5s170svCZ3FuYyTvkaSI3AM8DkyMOwTPBmCyiGSJSD+gP7DrSsYwDCM1XDZSEJHVQD5uC14NMBe3oJjFpfxiO1V1pr++GLfOcB74kaq+W/tn1jOGRQpBcMlP5j46DYCheQ8z6Xv5vq81lpeayGkXecSecZWo/v7711mxY1O48a9dbEej0Vp08sde3NTDZVC6uaNzMCfP/o9DR+Pl1OLZmaPl1Yy0wXY0GobRfCxSMIxrB4sUDMNoPuYUDMOIYE7BMIwI5hQMw4hgTsEwjAjmFAzDiBBwG1ujnAC+8MdU0x3TIxHTI8rVrEefplyUFvsUAESkvCnPUE0P08P0SK4eNn0wDCOCOQXDMCKkk1NIl+IGpkcU0yNKm9cjbdYUDMNID9IpUjAMIw1IC6cgIveISLWI7BeRJwKNeYuIlIjIXhHZLSKzvLyriGwRkX3+eEMgfdqJyJ9EZKM/7yciZV6PtSKSGUCHbBF5Q0SqvF1GpcIeIjLb/04qRWS1iHQIZQ8ReVlEjotIZYKsXhuIY6m/bytE5M4k6/G0/91UiMhbIpKd0DfH61EtIhNaMnbKnYKvC/EsUAAMAqb4+hHJ5jzwE1UdCIwEHvXjPgFsVdX+wFZ/HoJZwN6E84XAL7wenwKPBNBhCfCeqg4A7vD6BLWHiPQCfgjc5XOCtsPVEglljxXUrXPSkA0KcCkH++OSEC9Lsh5h6q00JQ98MhswCticcB6pHRFQj/XAeFxlqxwvywGqA4ydi7vZvglsxGXFPgFk1GejJOnQBTiIX2dKkAe1B64kwCdAV9zmuo3AhJD2oFadk4ZsADwPTKnvumToUauvxfVWGmopjxS4dBPECV4rwmerHg6UAT1V9SiAP/YIoMJi4DHggj/vBnymquf9eQib3IrLp/aKn8a8JCKdCGwPVf0nsAj4B3AUV0n3I8LbI5GGbJDKe3c6EM9/2qp6pINTaHKtiKQMLtIZWIdLMvt5qHETxr8XOK6qHyWK67k02TbJAO4ElqnqcNy281BTp4v4+fr9QD/gZlyCyIJ6Lk2Hx2YpuXdbUm+lKaSDUzgMJJYFygWOhBhYRNrjHMJKVX3Ti2tEJMf35+CK6yaT0cBEETkErMFNIRYD2SISfzclhE0OA4dVtcyfv4FzEqHtMQ44qKr/UtVzwJvA1wlvj0QaskHwe9fXW7kXKFI/V2htPdLBKfwR6O9XlzNxCyYbkj2oiAjwK2Cvqj6T0LUBmOb/PQ231pA0VHWOquaqal/c/32bqhYBJcCDAfU4BnwiIl/1oruBPQS2B27aMFJEOvrfUVyPoPaoRUM22ABM9U8hRgKn4tOMZBCs3koyF42asaBSiFtNPQAUBxrzG7gQqwL4s2+FuPn8VmCfP3YNaId8XCUucHP8XcB+4HUgK8D4w4Byb5O3gRtSYQ9gHlAFVAKv4WqMBLEHsBq3lnEO9w38SEM2wIXtz/r79q+4JybJ1GM/bu0gfr8uT7i+2OtRDRS0ZGzb0WgYRoR0mD4YhpFGmFMwDCOCOQXDMCKYUzAMI4I5BcMwIphTMAwjgjkFwzAimFMwDCPC/wEk8ojMFEt+jgAAAABJRU5ErkJggg==\n",
676
      "text/plain": [
677
       "<Figure size 432x288 with 1 Axes>"
678
      ]
679
     },
680
     "metadata": {
681
      "needs_background": "light"
682
     },
683
     "output_type": "display_data"
684
    }
685
   ],
686
   "source": [
687
    "plt.imshow(\n",
688
    "    _read(path_train_img + 'ID_ffff922b9.dcm', (128, 128))\n",
689
    ")"
690
   ]
691
  },
692
  {
693
   "cell_type": "code",
694
   "execution_count": 18,
695
   "metadata": {},
696
   "outputs": [],
697
   "source": [
698
    "# Augmentations\n",
699
    "# Flip Left Right\n",
700
    "# Cropping\n",
701
    "sometimes = lambda aug: iaa.Sometimes(0.25, aug)\n",
702
    "augmentation = iaa.Sequential([  \n",
703
    "                                iaa.Fliplr(0.25),\n",
704
    "                                sometimes(iaa.Crop(px=(0, 25), keep_size = True, \n",
705
    "                                                   sample_independently = False))   \n",
706
    "                            ], random_order = True)"
707
   ]
708
  },
709
  {
710
   "cell_type": "code",
711
   "execution_count": 19,
712
   "metadata": {},
713
   "outputs": [],
714
   "source": [
715
    "# Train Data Generator\n",
716
    "class TrainDataGenerator(keras.utils.Sequence):\n",
717
    "\n",
718
    "    def __init__(self, dataset, labels, batch_size=16, img_size=(512, 512), img_dir = path_train_img, \\\n",
719
    "                 augment = False, *args, **kwargs):\n",
720
    "        self.dataset = dataset\n",
721
    "        self.ids = dataset.index\n",
722
    "        self.labels = labels\n",
723
    "        self.batch_size = batch_size\n",
724
    "        self.img_size = img_size\n",
725
    "        self.img_dir = img_dir\n",
726
    "        self.augment = augment\n",
727
    "        self.on_epoch_end()\n",
728
    "\n",
729
    "    def __len__(self):\n",
730
    "        return int(ceil(len(self.ids) / self.batch_size))\n",
731
    "\n",
732
    "    def __getitem__(self, index):\n",
733
    "        indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n",
734
    "        X, Y = self.__data_generation(indices)\n",
735
    "        return X, Y\n",
736
    "\n",
737
    "    def augmentor(self, image):\n",
738
    "        augment_img = augmentation        \n",
739
    "        image_aug = augment_img.augment_image(image)\n",
740
    "        return image_aug\n",
741
    "\n",
742
    "    def on_epoch_end(self):\n",
743
    "        self.indices = np.arange(len(self.ids))\n",
744
    "        np.random.shuffle(self.indices)\n",
745
    "        \n",
746
    "    def __data_generation(self, indices):\n",
747
    "        X = np.empty((self.batch_size, *self.img_size, 3))\n",
748
    "        Y = np.empty((self.batch_size, 6), dtype=np.float32)\n",
749
    "        \n",
750
    "        for i, index in enumerate(indices):\n",
751
    "            ID = self.ids[index]\n",
752
    "            image = _read(self.img_dir + ID, self.img_size)\n",
753
    "            if self.augment:\n",
754
    "                X[i,] = self.augmentor(image)\n",
755
    "            else:\n",
756
    "                X[i,] = image            \n",
757
    "            Y[i,] = self.labels.iloc[index].values        \n",
758
    "        return X, Y\n",
759
    "    \n",
760
    "class TestDataGenerator(keras.utils.Sequence):\n",
761
    "    def __init__(self, ids, labels, batch_size = 5, img_size = (512, 512), img_dir = path_test_img, \\\n",
762
    "                 *args, **kwargs):\n",
763
    "        self.ids = ids\n",
764
    "        self.labels = labels\n",
765
    "        self.batch_size = batch_size\n",
766
    "        self.img_size = img_size\n",
767
    "        self.img_dir = img_dir\n",
768
    "        self.on_epoch_end()\n",
769
    "\n",
770
    "    def __len__(self):\n",
771
    "        return int(ceil(len(self.ids) / self.batch_size))\n",
772
    "\n",
773
    "    def __getitem__(self, index):\n",
774
    "        indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n",
775
    "        list_IDs_temp = [self.ids[k] for k in indices]\n",
776
    "        X = self.__data_generation(list_IDs_temp)\n",
777
    "        return X\n",
778
    "\n",
779
    "    def on_epoch_end(self):\n",
780
    "        self.indices = np.arange(len(self.ids))\n",
781
    "\n",
782
    "    def __data_generation(self, list_IDs_temp):\n",
783
    "        X = np.empty((self.batch_size, *self.img_size, 3))\n",
784
    "        for i, ID in enumerate(list_IDs_temp):\n",
785
    "            image = _read(self.img_dir + ID, self.img_size)\n",
786
    "            X[i,] = image            \n",
787
    "        return X"
788
   ]
789
  },
790
  {
791
   "cell_type": "markdown",
792
   "metadata": {},
793
   "source": [
794
    "As we have seen in EDA notebook that we have very few epidural subtypes so we need oversample this sub type"
795
   ]
796
  },
797
  {
798
   "cell_type": "code",
799
   "execution_count": 20,
800
   "metadata": {},
801
   "outputs": [
802
    {
803
     "name": "stdout",
804
     "output_type": "stream",
805
     "text": [
806
      "Train Shape: (677018, 6)\n"
807
     ]
808
    }
809
   ],
810
   "source": [
811
    "# Oversampling\n",
812
    "epidural_df = train_final_df[train_final_df.epidural == 1]\n",
813
    "train_final_df = pd.concat([train_final_df, epidural_df])\n",
814
    "print('Train Shape: {}'.format(train_final_df.shape))"
815
   ]
816
  },
817
  {
818
   "cell_type": "code",
819
   "execution_count": 21,
820
   "metadata": {},
821
   "outputs": [
822
    {
823
     "data": {
824
      "text/html": [
825
       "<div>\n",
826
       "<style scoped>\n",
827
       "    .dataframe tbody tr th:only-of-type {\n",
828
       "        vertical-align: middle;\n",
829
       "    }\n",
830
       "\n",
831
       "    .dataframe tbody tr th {\n",
832
       "        vertical-align: top;\n",
833
       "    }\n",
834
       "\n",
835
       "    .dataframe thead th {\n",
836
       "        text-align: right;\n",
837
       "    }\n",
838
       "</style>\n",
839
       "<table border=\"1\" class=\"dataframe\">\n",
840
       "  <thead>\n",
841
       "    <tr style=\"text-align: right;\">\n",
842
       "      <th></th>\n",
843
       "      <th>ID</th>\n",
844
       "      <th>Label</th>\n",
845
       "    </tr>\n",
846
       "  </thead>\n",
847
       "  <tbody>\n",
848
       "    <tr>\n",
849
       "      <th>0</th>\n",
850
       "      <td>ID_28fbab7eb_epidural</td>\n",
851
       "      <td>0.5</td>\n",
852
       "    </tr>\n",
853
       "    <tr>\n",
854
       "      <th>1</th>\n",
855
       "      <td>ID_28fbab7eb_intraparenchymal</td>\n",
856
       "      <td>0.5</td>\n",
857
       "    </tr>\n",
858
       "    <tr>\n",
859
       "      <th>2</th>\n",
860
       "      <td>ID_28fbab7eb_intraventricular</td>\n",
861
       "      <td>0.5</td>\n",
862
       "    </tr>\n",
863
       "    <tr>\n",
864
       "      <th>3</th>\n",
865
       "      <td>ID_28fbab7eb_subarachnoid</td>\n",
866
       "      <td>0.5</td>\n",
867
       "    </tr>\n",
868
       "    <tr>\n",
869
       "      <th>4</th>\n",
870
       "      <td>ID_28fbab7eb_subdural</td>\n",
871
       "      <td>0.5</td>\n",
872
       "    </tr>\n",
873
       "  </tbody>\n",
874
       "</table>\n",
875
       "</div>"
876
      ],
877
      "text/plain": [
878
       "                              ID  Label\n",
879
       "0          ID_28fbab7eb_epidural    0.5\n",
880
       "1  ID_28fbab7eb_intraparenchymal    0.5\n",
881
       "2  ID_28fbab7eb_intraventricular    0.5\n",
882
       "3      ID_28fbab7eb_subarachnoid    0.5\n",
883
       "4          ID_28fbab7eb_subdural    0.5"
884
      ]
885
     },
886
     "execution_count": 21,
887
     "metadata": {},
888
     "output_type": "execute_result"
889
    }
890
   ],
891
   "source": [
892
    "# load test set\n",
893
    "test_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n",
894
    "test_df.head()"
895
   ]
896
  },
897
  {
898
   "cell_type": "code",
899
   "execution_count": 22,
900
   "metadata": {},
901
   "outputs": [
902
    {
903
     "data": {
904
      "text/plain": [
905
       "(78545, 6)"
906
      ]
907
     },
908
     "execution_count": 22,
909
     "metadata": {},
910
     "output_type": "execute_result"
911
    }
912
   ],
913
   "source": [
914
    "# extract subtype\n",
915
    "test_df['sub_type'] = test_df['ID'].apply(lambda x: x.split('_')[-1])\n",
916
    "# extract filename\n",
917
    "test_df['file_name'] = test_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n",
918
    "\n",
919
    "test_df = pd.pivot_table(test_df.drop(columns='ID'), index=\"file_name\", \\\n",
920
    "                                columns=\"sub_type\", values=\"Label\")\n",
921
    "test_df.head()\n",
922
    "\n",
923
    "test_df.shape"
924
   ]
925
  },
926
  {
927
   "cell_type": "code",
928
   "execution_count": 23,
929
   "metadata": {},
930
   "outputs": [
931
    {
932
     "data": {
933
      "text/html": [
934
       "<div>\n",
935
       "<style scoped>\n",
936
       "    .dataframe tbody tr th:only-of-type {\n",
937
       "        vertical-align: middle;\n",
938
       "    }\n",
939
       "\n",
940
       "    .dataframe tbody tr th {\n",
941
       "        vertical-align: top;\n",
942
       "    }\n",
943
       "\n",
944
       "    .dataframe thead th {\n",
945
       "        text-align: right;\n",
946
       "    }\n",
947
       "</style>\n",
948
       "<table border=\"1\" class=\"dataframe\">\n",
949
       "  <thead>\n",
950
       "    <tr style=\"text-align: right;\">\n",
951
       "      <th>sub_type</th>\n",
952
       "      <th>any</th>\n",
953
       "      <th>epidural</th>\n",
954
       "      <th>intraparenchymal</th>\n",
955
       "      <th>intraventricular</th>\n",
956
       "      <th>subarachnoid</th>\n",
957
       "      <th>subdural</th>\n",
958
       "    </tr>\n",
959
       "    <tr>\n",
960
       "      <th>file_name</th>\n",
961
       "      <th></th>\n",
962
       "      <th></th>\n",
963
       "      <th></th>\n",
964
       "      <th></th>\n",
965
       "      <th></th>\n",
966
       "      <th></th>\n",
967
       "    </tr>\n",
968
       "  </thead>\n",
969
       "  <tbody>\n",
970
       "    <tr>\n",
971
       "      <th>ID_000012eaf.dcm</th>\n",
972
       "      <td>0.5</td>\n",
973
       "      <td>0.5</td>\n",
974
       "      <td>0.5</td>\n",
975
       "      <td>0.5</td>\n",
976
       "      <td>0.5</td>\n",
977
       "      <td>0.5</td>\n",
978
       "    </tr>\n",
979
       "    <tr>\n",
980
       "      <th>ID_0000ca2f6.dcm</th>\n",
981
       "      <td>0.5</td>\n",
982
       "      <td>0.5</td>\n",
983
       "      <td>0.5</td>\n",
984
       "      <td>0.5</td>\n",
985
       "      <td>0.5</td>\n",
986
       "      <td>0.5</td>\n",
987
       "    </tr>\n",
988
       "    <tr>\n",
989
       "      <th>ID_000259ccf.dcm</th>\n",
990
       "      <td>0.5</td>\n",
991
       "      <td>0.5</td>\n",
992
       "      <td>0.5</td>\n",
993
       "      <td>0.5</td>\n",
994
       "      <td>0.5</td>\n",
995
       "      <td>0.5</td>\n",
996
       "    </tr>\n",
997
       "    <tr>\n",
998
       "      <th>ID_0002d438a.dcm</th>\n",
999
       "      <td>0.5</td>\n",
1000
       "      <td>0.5</td>\n",
1001
       "      <td>0.5</td>\n",
1002
       "      <td>0.5</td>\n",
1003
       "      <td>0.5</td>\n",
1004
       "      <td>0.5</td>\n",
1005
       "    </tr>\n",
1006
       "    <tr>\n",
1007
       "      <th>ID_00032d440.dcm</th>\n",
1008
       "      <td>0.5</td>\n",
1009
       "      <td>0.5</td>\n",
1010
       "      <td>0.5</td>\n",
1011
       "      <td>0.5</td>\n",
1012
       "      <td>0.5</td>\n",
1013
       "      <td>0.5</td>\n",
1014
       "    </tr>\n",
1015
       "  </tbody>\n",
1016
       "</table>\n",
1017
       "</div>"
1018
      ],
1019
      "text/plain": [
1020
       "sub_type          any  epidural  intraparenchymal  intraventricular  \\\n",
1021
       "file_name                                                             \n",
1022
       "ID_000012eaf.dcm  0.5       0.5               0.5               0.5   \n",
1023
       "ID_0000ca2f6.dcm  0.5       0.5               0.5               0.5   \n",
1024
       "ID_000259ccf.dcm  0.5       0.5               0.5               0.5   \n",
1025
       "ID_0002d438a.dcm  0.5       0.5               0.5               0.5   \n",
1026
       "ID_00032d440.dcm  0.5       0.5               0.5               0.5   \n",
1027
       "\n",
1028
       "sub_type          subarachnoid  subdural  \n",
1029
       "file_name                                 \n",
1030
       "ID_000012eaf.dcm           0.5       0.5  \n",
1031
       "ID_0000ca2f6.dcm           0.5       0.5  \n",
1032
       "ID_000259ccf.dcm           0.5       0.5  \n",
1033
       "ID_0002d438a.dcm           0.5       0.5  \n",
1034
       "ID_00032d440.dcm           0.5       0.5  "
1035
      ]
1036
     },
1037
     "execution_count": 23,
1038
     "metadata": {},
1039
     "output_type": "execute_result"
1040
    }
1041
   ],
1042
   "source": [
1043
    "test_df.head()"
1044
   ]
1045
  },
1046
  {
1047
   "cell_type": "code",
1048
   "execution_count": 24,
1049
   "metadata": {},
1050
   "outputs": [
1051
    {
1052
     "name": "stdout",
1053
     "output_type": "stream",
1054
     "text": [
1055
      "Downloading data from https://github.com/Callidior/keras-applications/releases/download/efficientnet/efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5\n",
1056
      "16809984/16804768 [==============================] - 1s 0us/step\n",
1057
      "Model: \"model_1\"\n",
1058
      "__________________________________________________________________________________________________\n",
1059
      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
1060
      "==================================================================================================\n",
1061
      "input_1 (InputLayer)            (None, 256, 256, 3)  0                                            \n",
1062
      "__________________________________________________________________________________________________\n",
1063
      "stem_conv (Conv2D)              (None, 128, 128, 32) 864         input_1[0][0]                    \n",
1064
      "__________________________________________________________________________________________________\n",
1065
      "stem_bn (BatchNormalization)    (None, 128, 128, 32) 128         stem_conv[0][0]                  \n",
1066
      "__________________________________________________________________________________________________\n",
1067
      "stem_activation (Activation)    (None, 128, 128, 32) 0           stem_bn[0][0]                    \n",
1068
      "__________________________________________________________________________________________________\n",
1069
      "block1a_dwconv (DepthwiseConv2D (None, 128, 128, 32) 288         stem_activation[0][0]            \n",
1070
      "__________________________________________________________________________________________________\n",
1071
      "block1a_bn (BatchNormalization) (None, 128, 128, 32) 128         block1a_dwconv[0][0]             \n",
1072
      "__________________________________________________________________________________________________\n",
1073
      "block1a_activation (Activation) (None, 128, 128, 32) 0           block1a_bn[0][0]                 \n",
1074
      "__________________________________________________________________________________________________\n",
1075
      "block1a_se_squeeze (GlobalAvera (None, 32)           0           block1a_activation[0][0]         \n",
1076
      "__________________________________________________________________________________________________\n",
1077
      "block1a_se_reshape (Reshape)    (None, 1, 1, 32)     0           block1a_se_squeeze[0][0]         \n",
1078
      "__________________________________________________________________________________________________\n",
1079
      "block1a_se_reduce (Conv2D)      (None, 1, 1, 8)      264         block1a_se_reshape[0][0]         \n",
1080
      "__________________________________________________________________________________________________\n",
1081
      "block1a_se_expand (Conv2D)      (None, 1, 1, 32)     288         block1a_se_reduce[0][0]          \n",
1082
      "__________________________________________________________________________________________________\n",
1083
      "block1a_se_excite (Multiply)    (None, 128, 128, 32) 0           block1a_activation[0][0]         \n",
1084
      "                                                                 block1a_se_expand[0][0]          \n",
1085
      "__________________________________________________________________________________________________\n",
1086
      "block1a_project_conv (Conv2D)   (None, 128, 128, 16) 512         block1a_se_excite[0][0]          \n",
1087
      "__________________________________________________________________________________________________\n",
1088
      "block1a_project_bn (BatchNormal (None, 128, 128, 16) 64          block1a_project_conv[0][0]       \n",
1089
      "__________________________________________________________________________________________________\n",
1090
      "block2a_expand_conv (Conv2D)    (None, 128, 128, 96) 1536        block1a_project_bn[0][0]         \n",
1091
      "__________________________________________________________________________________________________\n",
1092
      "block2a_expand_bn (BatchNormali (None, 128, 128, 96) 384         block2a_expand_conv[0][0]        \n",
1093
      "__________________________________________________________________________________________________\n",
1094
      "block2a_expand_activation (Acti (None, 128, 128, 96) 0           block2a_expand_bn[0][0]          \n",
1095
      "__________________________________________________________________________________________________\n",
1096
      "block2a_dwconv (DepthwiseConv2D (None, 64, 64, 96)   864         block2a_expand_activation[0][0]  \n",
1097
      "__________________________________________________________________________________________________\n",
1098
      "block2a_bn (BatchNormalization) (None, 64, 64, 96)   384         block2a_dwconv[0][0]             \n",
1099
      "__________________________________________________________________________________________________\n",
1100
      "block2a_activation (Activation) (None, 64, 64, 96)   0           block2a_bn[0][0]                 \n",
1101
      "__________________________________________________________________________________________________\n",
1102
      "block2a_se_squeeze (GlobalAvera (None, 96)           0           block2a_activation[0][0]         \n",
1103
      "__________________________________________________________________________________________________\n",
1104
      "block2a_se_reshape (Reshape)    (None, 1, 1, 96)     0           block2a_se_squeeze[0][0]         \n",
1105
      "__________________________________________________________________________________________________\n",
1106
      "block2a_se_reduce (Conv2D)      (None, 1, 1, 4)      388         block2a_se_reshape[0][0]         \n",
1107
      "__________________________________________________________________________________________________\n",
1108
      "block2a_se_expand (Conv2D)      (None, 1, 1, 96)     480         block2a_se_reduce[0][0]          \n",
1109
      "__________________________________________________________________________________________________\n",
1110
      "block2a_se_excite (Multiply)    (None, 64, 64, 96)   0           block2a_activation[0][0]         \n",
1111
      "                                                                 block2a_se_expand[0][0]          \n",
1112
      "__________________________________________________________________________________________________\n",
1113
      "block2a_project_conv (Conv2D)   (None, 64, 64, 24)   2304        block2a_se_excite[0][0]          \n",
1114
      "__________________________________________________________________________________________________\n",
1115
      "block2a_project_bn (BatchNormal (None, 64, 64, 24)   96          block2a_project_conv[0][0]       \n",
1116
      "__________________________________________________________________________________________________\n",
1117
      "block2b_expand_conv (Conv2D)    (None, 64, 64, 144)  3456        block2a_project_bn[0][0]         \n",
1118
      "__________________________________________________________________________________________________\n",
1119
      "block2b_expand_bn (BatchNormali (None, 64, 64, 144)  576         block2b_expand_conv[0][0]        \n",
1120
      "__________________________________________________________________________________________________\n",
1121
      "block2b_expand_activation (Acti (None, 64, 64, 144)  0           block2b_expand_bn[0][0]          \n",
1122
      "__________________________________________________________________________________________________\n",
1123
      "block2b_dwconv (DepthwiseConv2D (None, 64, 64, 144)  1296        block2b_expand_activation[0][0]  \n",
1124
      "__________________________________________________________________________________________________\n",
1125
      "block2b_bn (BatchNormalization) (None, 64, 64, 144)  576         block2b_dwconv[0][0]             \n",
1126
      "__________________________________________________________________________________________________\n",
1127
      "block2b_activation (Activation) (None, 64, 64, 144)  0           block2b_bn[0][0]                 \n",
1128
      "__________________________________________________________________________________________________\n",
1129
      "block2b_se_squeeze (GlobalAvera (None, 144)          0           block2b_activation[0][0]         \n",
1130
      "__________________________________________________________________________________________________\n",
1131
      "block2b_se_reshape (Reshape)    (None, 1, 1, 144)    0           block2b_se_squeeze[0][0]         \n",
1132
      "__________________________________________________________________________________________________\n",
1133
      "block2b_se_reduce (Conv2D)      (None, 1, 1, 6)      870         block2b_se_reshape[0][0]         \n",
1134
      "__________________________________________________________________________________________________\n",
1135
      "block2b_se_expand (Conv2D)      (None, 1, 1, 144)    1008        block2b_se_reduce[0][0]          \n",
1136
      "__________________________________________________________________________________________________\n",
1137
      "block2b_se_excite (Multiply)    (None, 64, 64, 144)  0           block2b_activation[0][0]         \n",
1138
      "                                                                 block2b_se_expand[0][0]          \n",
1139
      "__________________________________________________________________________________________________\n",
1140
      "block2b_project_conv (Conv2D)   (None, 64, 64, 24)   3456        block2b_se_excite[0][0]          \n",
1141
      "__________________________________________________________________________________________________\n",
1142
      "block2b_project_bn (BatchNormal (None, 64, 64, 24)   96          block2b_project_conv[0][0]       \n",
1143
      "__________________________________________________________________________________________________\n",
1144
      "block2b_drop (FixedDropout)     (None, 64, 64, 24)   0           block2b_project_bn[0][0]         \n",
1145
      "__________________________________________________________________________________________________\n",
1146
      "block2b_add (Add)               (None, 64, 64, 24)   0           block2b_drop[0][0]               \n",
1147
      "                                                                 block2a_project_bn[0][0]         \n",
1148
      "__________________________________________________________________________________________________\n",
1149
      "block3a_expand_conv (Conv2D)    (None, 64, 64, 144)  3456        block2b_add[0][0]                \n",
1150
      "__________________________________________________________________________________________________\n",
1151
      "block3a_expand_bn (BatchNormali (None, 64, 64, 144)  576         block3a_expand_conv[0][0]        \n",
1152
      "__________________________________________________________________________________________________\n",
1153
      "block3a_expand_activation (Acti (None, 64, 64, 144)  0           block3a_expand_bn[0][0]          \n",
1154
      "__________________________________________________________________________________________________\n",
1155
      "block3a_dwconv (DepthwiseConv2D (None, 32, 32, 144)  3600        block3a_expand_activation[0][0]  \n",
1156
      "__________________________________________________________________________________________________\n",
1157
      "block3a_bn (BatchNormalization) (None, 32, 32, 144)  576         block3a_dwconv[0][0]             \n",
1158
      "__________________________________________________________________________________________________\n",
1159
      "block3a_activation (Activation) (None, 32, 32, 144)  0           block3a_bn[0][0]                 \n",
1160
      "__________________________________________________________________________________________________\n",
1161
      "block3a_se_squeeze (GlobalAvera (None, 144)          0           block3a_activation[0][0]         \n",
1162
      "__________________________________________________________________________________________________\n",
1163
      "block3a_se_reshape (Reshape)    (None, 1, 1, 144)    0           block3a_se_squeeze[0][0]         \n",
1164
      "__________________________________________________________________________________________________\n",
1165
      "block3a_se_reduce (Conv2D)      (None, 1, 1, 6)      870         block3a_se_reshape[0][0]         \n",
1166
      "__________________________________________________________________________________________________\n",
1167
      "block3a_se_expand (Conv2D)      (None, 1, 1, 144)    1008        block3a_se_reduce[0][0]          \n",
1168
      "__________________________________________________________________________________________________\n",
1169
      "block3a_se_excite (Multiply)    (None, 32, 32, 144)  0           block3a_activation[0][0]         \n",
1170
      "                                                                 block3a_se_expand[0][0]          \n",
1171
      "__________________________________________________________________________________________________\n",
1172
      "block3a_project_conv (Conv2D)   (None, 32, 32, 40)   5760        block3a_se_excite[0][0]          \n",
1173
      "__________________________________________________________________________________________________\n",
1174
      "block3a_project_bn (BatchNormal (None, 32, 32, 40)   160         block3a_project_conv[0][0]       \n",
1175
      "__________________________________________________________________________________________________\n",
1176
      "block3b_expand_conv (Conv2D)    (None, 32, 32, 240)  9600        block3a_project_bn[0][0]         \n",
1177
      "__________________________________________________________________________________________________\n",
1178
      "block3b_expand_bn (BatchNormali (None, 32, 32, 240)  960         block3b_expand_conv[0][0]        \n",
1179
      "__________________________________________________________________________________________________\n",
1180
      "block3b_expand_activation (Acti (None, 32, 32, 240)  0           block3b_expand_bn[0][0]          \n",
1181
      "__________________________________________________________________________________________________\n",
1182
      "block3b_dwconv (DepthwiseConv2D (None, 32, 32, 240)  6000        block3b_expand_activation[0][0]  \n",
1183
      "__________________________________________________________________________________________________\n",
1184
      "block3b_bn (BatchNormalization) (None, 32, 32, 240)  960         block3b_dwconv[0][0]             \n",
1185
      "__________________________________________________________________________________________________\n",
1186
      "block3b_activation (Activation) (None, 32, 32, 240)  0           block3b_bn[0][0]                 \n",
1187
      "__________________________________________________________________________________________________\n",
1188
      "block3b_se_squeeze (GlobalAvera (None, 240)          0           block3b_activation[0][0]         \n",
1189
      "__________________________________________________________________________________________________\n",
1190
      "block3b_se_reshape (Reshape)    (None, 1, 1, 240)    0           block3b_se_squeeze[0][0]         \n",
1191
      "__________________________________________________________________________________________________\n",
1192
      "block3b_se_reduce (Conv2D)      (None, 1, 1, 10)     2410        block3b_se_reshape[0][0]         \n",
1193
      "__________________________________________________________________________________________________\n",
1194
      "block3b_se_expand (Conv2D)      (None, 1, 1, 240)    2640        block3b_se_reduce[0][0]          \n",
1195
      "__________________________________________________________________________________________________\n",
1196
      "block3b_se_excite (Multiply)    (None, 32, 32, 240)  0           block3b_activation[0][0]         \n",
1197
      "                                                                 block3b_se_expand[0][0]          \n",
1198
      "__________________________________________________________________________________________________\n",
1199
      "block3b_project_conv (Conv2D)   (None, 32, 32, 40)   9600        block3b_se_excite[0][0]          \n",
1200
      "__________________________________________________________________________________________________\n",
1201
      "block3b_project_bn (BatchNormal (None, 32, 32, 40)   160         block3b_project_conv[0][0]       \n",
1202
      "__________________________________________________________________________________________________\n",
1203
      "block3b_drop (FixedDropout)     (None, 32, 32, 40)   0           block3b_project_bn[0][0]         \n",
1204
      "__________________________________________________________________________________________________\n",
1205
      "block3b_add (Add)               (None, 32, 32, 40)   0           block3b_drop[0][0]               \n",
1206
      "                                                                 block3a_project_bn[0][0]         \n",
1207
      "__________________________________________________________________________________________________\n",
1208
      "block4a_expand_conv (Conv2D)    (None, 32, 32, 240)  9600        block3b_add[0][0]                \n",
1209
      "__________________________________________________________________________________________________\n",
1210
      "block4a_expand_bn (BatchNormali (None, 32, 32, 240)  960         block4a_expand_conv[0][0]        \n",
1211
      "__________________________________________________________________________________________________\n",
1212
      "block4a_expand_activation (Acti (None, 32, 32, 240)  0           block4a_expand_bn[0][0]          \n",
1213
      "__________________________________________________________________________________________________\n",
1214
      "block4a_dwconv (DepthwiseConv2D (None, 16, 16, 240)  2160        block4a_expand_activation[0][0]  \n",
1215
      "__________________________________________________________________________________________________\n",
1216
      "block4a_bn (BatchNormalization) (None, 16, 16, 240)  960         block4a_dwconv[0][0]             \n",
1217
      "__________________________________________________________________________________________________\n",
1218
      "block4a_activation (Activation) (None, 16, 16, 240)  0           block4a_bn[0][0]                 \n",
1219
      "__________________________________________________________________________________________________\n",
1220
      "block4a_se_squeeze (GlobalAvera (None, 240)          0           block4a_activation[0][0]         \n",
1221
      "__________________________________________________________________________________________________\n",
1222
      "block4a_se_reshape (Reshape)    (None, 1, 1, 240)    0           block4a_se_squeeze[0][0]         \n",
1223
      "__________________________________________________________________________________________________\n",
1224
      "block4a_se_reduce (Conv2D)      (None, 1, 1, 10)     2410        block4a_se_reshape[0][0]         \n",
1225
      "__________________________________________________________________________________________________\n",
1226
      "block4a_se_expand (Conv2D)      (None, 1, 1, 240)    2640        block4a_se_reduce[0][0]          \n",
1227
      "__________________________________________________________________________________________________\n",
1228
      "block4a_se_excite (Multiply)    (None, 16, 16, 240)  0           block4a_activation[0][0]         \n",
1229
      "                                                                 block4a_se_expand[0][0]          \n",
1230
      "__________________________________________________________________________________________________\n",
1231
      "block4a_project_conv (Conv2D)   (None, 16, 16, 80)   19200       block4a_se_excite[0][0]          \n",
1232
      "__________________________________________________________________________________________________\n",
1233
      "block4a_project_bn (BatchNormal (None, 16, 16, 80)   320         block4a_project_conv[0][0]       \n",
1234
      "__________________________________________________________________________________________________\n",
1235
      "block4b_expand_conv (Conv2D)    (None, 16, 16, 480)  38400       block4a_project_bn[0][0]         \n",
1236
      "__________________________________________________________________________________________________\n",
1237
      "block4b_expand_bn (BatchNormali (None, 16, 16, 480)  1920        block4b_expand_conv[0][0]        \n",
1238
      "__________________________________________________________________________________________________\n",
1239
      "block4b_expand_activation (Acti (None, 16, 16, 480)  0           block4b_expand_bn[0][0]          \n",
1240
      "__________________________________________________________________________________________________\n",
1241
      "block4b_dwconv (DepthwiseConv2D (None, 16, 16, 480)  4320        block4b_expand_activation[0][0]  \n",
1242
      "__________________________________________________________________________________________________\n",
1243
      "block4b_bn (BatchNormalization) (None, 16, 16, 480)  1920        block4b_dwconv[0][0]             \n",
1244
      "__________________________________________________________________________________________________\n",
1245
      "block4b_activation (Activation) (None, 16, 16, 480)  0           block4b_bn[0][0]                 \n",
1246
      "__________________________________________________________________________________________________\n",
1247
      "block4b_se_squeeze (GlobalAvera (None, 480)          0           block4b_activation[0][0]         \n",
1248
      "__________________________________________________________________________________________________\n",
1249
      "block4b_se_reshape (Reshape)    (None, 1, 1, 480)    0           block4b_se_squeeze[0][0]         \n",
1250
      "__________________________________________________________________________________________________\n",
1251
      "block4b_se_reduce (Conv2D)      (None, 1, 1, 20)     9620        block4b_se_reshape[0][0]         \n",
1252
      "__________________________________________________________________________________________________\n",
1253
      "block4b_se_expand (Conv2D)      (None, 1, 1, 480)    10080       block4b_se_reduce[0][0]          \n",
1254
      "__________________________________________________________________________________________________\n",
1255
      "block4b_se_excite (Multiply)    (None, 16, 16, 480)  0           block4b_activation[0][0]         \n",
1256
      "                                                                 block4b_se_expand[0][0]          \n",
1257
      "__________________________________________________________________________________________________\n",
1258
      "block4b_project_conv (Conv2D)   (None, 16, 16, 80)   38400       block4b_se_excite[0][0]          \n",
1259
      "__________________________________________________________________________________________________\n",
1260
      "block4b_project_bn (BatchNormal (None, 16, 16, 80)   320         block4b_project_conv[0][0]       \n",
1261
      "__________________________________________________________________________________________________\n",
1262
      "block4b_drop (FixedDropout)     (None, 16, 16, 80)   0           block4b_project_bn[0][0]         \n",
1263
      "__________________________________________________________________________________________________\n",
1264
      "block4b_add (Add)               (None, 16, 16, 80)   0           block4b_drop[0][0]               \n",
1265
      "                                                                 block4a_project_bn[0][0]         \n",
1266
      "__________________________________________________________________________________________________\n",
1267
      "block4c_expand_conv (Conv2D)    (None, 16, 16, 480)  38400       block4b_add[0][0]                \n",
1268
      "__________________________________________________________________________________________________\n",
1269
      "block4c_expand_bn (BatchNormali (None, 16, 16, 480)  1920        block4c_expand_conv[0][0]        \n",
1270
      "__________________________________________________________________________________________________\n",
1271
      "block4c_expand_activation (Acti (None, 16, 16, 480)  0           block4c_expand_bn[0][0]          \n",
1272
      "__________________________________________________________________________________________________\n",
1273
      "block4c_dwconv (DepthwiseConv2D (None, 16, 16, 480)  4320        block4c_expand_activation[0][0]  \n",
1274
      "__________________________________________________________________________________________________\n",
1275
      "block4c_bn (BatchNormalization) (None, 16, 16, 480)  1920        block4c_dwconv[0][0]             \n",
1276
      "__________________________________________________________________________________________________\n",
1277
      "block4c_activation (Activation) (None, 16, 16, 480)  0           block4c_bn[0][0]                 \n",
1278
      "__________________________________________________________________________________________________\n",
1279
      "block4c_se_squeeze (GlobalAvera (None, 480)          0           block4c_activation[0][0]         \n",
1280
      "__________________________________________________________________________________________________\n",
1281
      "block4c_se_reshape (Reshape)    (None, 1, 1, 480)    0           block4c_se_squeeze[0][0]         \n",
1282
      "__________________________________________________________________________________________________\n",
1283
      "block4c_se_reduce (Conv2D)      (None, 1, 1, 20)     9620        block4c_se_reshape[0][0]         \n",
1284
      "__________________________________________________________________________________________________\n",
1285
      "block4c_se_expand (Conv2D)      (None, 1, 1, 480)    10080       block4c_se_reduce[0][0]          \n",
1286
      "__________________________________________________________________________________________________\n",
1287
      "block4c_se_excite (Multiply)    (None, 16, 16, 480)  0           block4c_activation[0][0]         \n",
1288
      "                                                                 block4c_se_expand[0][0]          \n",
1289
      "__________________________________________________________________________________________________\n",
1290
      "block4c_project_conv (Conv2D)   (None, 16, 16, 80)   38400       block4c_se_excite[0][0]          \n",
1291
      "__________________________________________________________________________________________________\n",
1292
      "block4c_project_bn (BatchNormal (None, 16, 16, 80)   320         block4c_project_conv[0][0]       \n",
1293
      "__________________________________________________________________________________________________\n",
1294
      "block4c_drop (FixedDropout)     (None, 16, 16, 80)   0           block4c_project_bn[0][0]         \n",
1295
      "__________________________________________________________________________________________________\n",
1296
      "block4c_add (Add)               (None, 16, 16, 80)   0           block4c_drop[0][0]               \n",
1297
      "                                                                 block4b_add[0][0]                \n",
1298
      "__________________________________________________________________________________________________\n",
1299
      "block5a_expand_conv (Conv2D)    (None, 16, 16, 480)  38400       block4c_add[0][0]                \n",
1300
      "__________________________________________________________________________________________________\n",
1301
      "block5a_expand_bn (BatchNormali (None, 16, 16, 480)  1920        block5a_expand_conv[0][0]        \n",
1302
      "__________________________________________________________________________________________________\n",
1303
      "block5a_expand_activation (Acti (None, 16, 16, 480)  0           block5a_expand_bn[0][0]          \n",
1304
      "__________________________________________________________________________________________________\n",
1305
      "block5a_dwconv (DepthwiseConv2D (None, 16, 16, 480)  12000       block5a_expand_activation[0][0]  \n",
1306
      "__________________________________________________________________________________________________\n",
1307
      "block5a_bn (BatchNormalization) (None, 16, 16, 480)  1920        block5a_dwconv[0][0]             \n",
1308
      "__________________________________________________________________________________________________\n",
1309
      "block5a_activation (Activation) (None, 16, 16, 480)  0           block5a_bn[0][0]                 \n",
1310
      "__________________________________________________________________________________________________\n",
1311
      "block5a_se_squeeze (GlobalAvera (None, 480)          0           block5a_activation[0][0]         \n",
1312
      "__________________________________________________________________________________________________\n",
1313
      "block5a_se_reshape (Reshape)    (None, 1, 1, 480)    0           block5a_se_squeeze[0][0]         \n",
1314
      "__________________________________________________________________________________________________\n",
1315
      "block5a_se_reduce (Conv2D)      (None, 1, 1, 20)     9620        block5a_se_reshape[0][0]         \n",
1316
      "__________________________________________________________________________________________________\n",
1317
      "block5a_se_expand (Conv2D)      (None, 1, 1, 480)    10080       block5a_se_reduce[0][0]          \n",
1318
      "__________________________________________________________________________________________________\n",
1319
      "block5a_se_excite (Multiply)    (None, 16, 16, 480)  0           block5a_activation[0][0]         \n",
1320
      "                                                                 block5a_se_expand[0][0]          \n",
1321
      "__________________________________________________________________________________________________\n",
1322
      "block5a_project_conv (Conv2D)   (None, 16, 16, 112)  53760       block5a_se_excite[0][0]          \n",
1323
      "__________________________________________________________________________________________________\n",
1324
      "block5a_project_bn (BatchNormal (None, 16, 16, 112)  448         block5a_project_conv[0][0]       \n",
1325
      "__________________________________________________________________________________________________\n",
1326
      "block5b_expand_conv (Conv2D)    (None, 16, 16, 672)  75264       block5a_project_bn[0][0]         \n",
1327
      "__________________________________________________________________________________________________\n",
1328
      "block5b_expand_bn (BatchNormali (None, 16, 16, 672)  2688        block5b_expand_conv[0][0]        \n",
1329
      "__________________________________________________________________________________________________\n",
1330
      "block5b_expand_activation (Acti (None, 16, 16, 672)  0           block5b_expand_bn[0][0]          \n",
1331
      "__________________________________________________________________________________________________\n",
1332
      "block5b_dwconv (DepthwiseConv2D (None, 16, 16, 672)  16800       block5b_expand_activation[0][0]  \n",
1333
      "__________________________________________________________________________________________________\n",
1334
      "block5b_bn (BatchNormalization) (None, 16, 16, 672)  2688        block5b_dwconv[0][0]             \n",
1335
      "__________________________________________________________________________________________________\n",
1336
      "block5b_activation (Activation) (None, 16, 16, 672)  0           block5b_bn[0][0]                 \n",
1337
      "__________________________________________________________________________________________________\n",
1338
      "block5b_se_squeeze (GlobalAvera (None, 672)          0           block5b_activation[0][0]         \n",
1339
      "__________________________________________________________________________________________________\n",
1340
      "block5b_se_reshape (Reshape)    (None, 1, 1, 672)    0           block5b_se_squeeze[0][0]         \n",
1341
      "__________________________________________________________________________________________________\n",
1342
      "block5b_se_reduce (Conv2D)      (None, 1, 1, 28)     18844       block5b_se_reshape[0][0]         \n",
1343
      "__________________________________________________________________________________________________\n",
1344
      "block5b_se_expand (Conv2D)      (None, 1, 1, 672)    19488       block5b_se_reduce[0][0]          \n",
1345
      "__________________________________________________________________________________________________\n",
1346
      "block5b_se_excite (Multiply)    (None, 16, 16, 672)  0           block5b_activation[0][0]         \n",
1347
      "                                                                 block5b_se_expand[0][0]          \n",
1348
      "__________________________________________________________________________________________________\n",
1349
      "block5b_project_conv (Conv2D)   (None, 16, 16, 112)  75264       block5b_se_excite[0][0]          \n",
1350
      "__________________________________________________________________________________________________\n",
1351
      "block5b_project_bn (BatchNormal (None, 16, 16, 112)  448         block5b_project_conv[0][0]       \n",
1352
      "__________________________________________________________________________________________________\n",
1353
      "block5b_drop (FixedDropout)     (None, 16, 16, 112)  0           block5b_project_bn[0][0]         \n",
1354
      "__________________________________________________________________________________________________\n",
1355
      "block5b_add (Add)               (None, 16, 16, 112)  0           block5b_drop[0][0]               \n",
1356
      "                                                                 block5a_project_bn[0][0]         \n",
1357
      "__________________________________________________________________________________________________\n",
1358
      "block5c_expand_conv (Conv2D)    (None, 16, 16, 672)  75264       block5b_add[0][0]                \n",
1359
      "__________________________________________________________________________________________________\n",
1360
      "block5c_expand_bn (BatchNormali (None, 16, 16, 672)  2688        block5c_expand_conv[0][0]        \n",
1361
      "__________________________________________________________________________________________________\n",
1362
      "block5c_expand_activation (Acti (None, 16, 16, 672)  0           block5c_expand_bn[0][0]          \n",
1363
      "__________________________________________________________________________________________________\n",
1364
      "block5c_dwconv (DepthwiseConv2D (None, 16, 16, 672)  16800       block5c_expand_activation[0][0]  \n",
1365
      "__________________________________________________________________________________________________\n",
1366
      "block5c_bn (BatchNormalization) (None, 16, 16, 672)  2688        block5c_dwconv[0][0]             \n",
1367
      "__________________________________________________________________________________________________\n",
1368
      "block5c_activation (Activation) (None, 16, 16, 672)  0           block5c_bn[0][0]                 \n",
1369
      "__________________________________________________________________________________________________\n",
1370
      "block5c_se_squeeze (GlobalAvera (None, 672)          0           block5c_activation[0][0]         \n",
1371
      "__________________________________________________________________________________________________\n",
1372
      "block5c_se_reshape (Reshape)    (None, 1, 1, 672)    0           block5c_se_squeeze[0][0]         \n",
1373
      "__________________________________________________________________________________________________\n",
1374
      "block5c_se_reduce (Conv2D)      (None, 1, 1, 28)     18844       block5c_se_reshape[0][0]         \n",
1375
      "__________________________________________________________________________________________________\n",
1376
      "block5c_se_expand (Conv2D)      (None, 1, 1, 672)    19488       block5c_se_reduce[0][0]          \n",
1377
      "__________________________________________________________________________________________________\n",
1378
      "block5c_se_excite (Multiply)    (None, 16, 16, 672)  0           block5c_activation[0][0]         \n",
1379
      "                                                                 block5c_se_expand[0][0]          \n",
1380
      "__________________________________________________________________________________________________\n",
1381
      "block5c_project_conv (Conv2D)   (None, 16, 16, 112)  75264       block5c_se_excite[0][0]          \n",
1382
      "__________________________________________________________________________________________________\n",
1383
      "block5c_project_bn (BatchNormal (None, 16, 16, 112)  448         block5c_project_conv[0][0]       \n",
1384
      "__________________________________________________________________________________________________\n",
1385
      "block5c_drop (FixedDropout)     (None, 16, 16, 112)  0           block5c_project_bn[0][0]         \n",
1386
      "__________________________________________________________________________________________________\n",
1387
      "block5c_add (Add)               (None, 16, 16, 112)  0           block5c_drop[0][0]               \n",
1388
      "                                                                 block5b_add[0][0]                \n",
1389
      "__________________________________________________________________________________________________\n",
1390
      "block6a_expand_conv (Conv2D)    (None, 16, 16, 672)  75264       block5c_add[0][0]                \n",
1391
      "__________________________________________________________________________________________________\n",
1392
      "block6a_expand_bn (BatchNormali (None, 16, 16, 672)  2688        block6a_expand_conv[0][0]        \n",
1393
      "__________________________________________________________________________________________________\n",
1394
      "block6a_expand_activation (Acti (None, 16, 16, 672)  0           block6a_expand_bn[0][0]          \n",
1395
      "__________________________________________________________________________________________________\n",
1396
      "block6a_dwconv (DepthwiseConv2D (None, 8, 8, 672)    16800       block6a_expand_activation[0][0]  \n",
1397
      "__________________________________________________________________________________________________\n",
1398
      "block6a_bn (BatchNormalization) (None, 8, 8, 672)    2688        block6a_dwconv[0][0]             \n",
1399
      "__________________________________________________________________________________________________\n",
1400
      "block6a_activation (Activation) (None, 8, 8, 672)    0           block6a_bn[0][0]                 \n",
1401
      "__________________________________________________________________________________________________\n",
1402
      "block6a_se_squeeze (GlobalAvera (None, 672)          0           block6a_activation[0][0]         \n",
1403
      "__________________________________________________________________________________________________\n",
1404
      "block6a_se_reshape (Reshape)    (None, 1, 1, 672)    0           block6a_se_squeeze[0][0]         \n",
1405
      "__________________________________________________________________________________________________\n",
1406
      "block6a_se_reduce (Conv2D)      (None, 1, 1, 28)     18844       block6a_se_reshape[0][0]         \n",
1407
      "__________________________________________________________________________________________________\n",
1408
      "block6a_se_expand (Conv2D)      (None, 1, 1, 672)    19488       block6a_se_reduce[0][0]          \n",
1409
      "__________________________________________________________________________________________________\n",
1410
      "block6a_se_excite (Multiply)    (None, 8, 8, 672)    0           block6a_activation[0][0]         \n",
1411
      "                                                                 block6a_se_expand[0][0]          \n",
1412
      "__________________________________________________________________________________________________\n",
1413
      "block6a_project_conv (Conv2D)   (None, 8, 8, 192)    129024      block6a_se_excite[0][0]          \n",
1414
      "__________________________________________________________________________________________________\n",
1415
      "block6a_project_bn (BatchNormal (None, 8, 8, 192)    768         block6a_project_conv[0][0]       \n",
1416
      "__________________________________________________________________________________________________\n",
1417
      "block6b_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6a_project_bn[0][0]         \n",
1418
      "__________________________________________________________________________________________________\n",
1419
      "block6b_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block6b_expand_conv[0][0]        \n",
1420
      "__________________________________________________________________________________________________\n",
1421
      "block6b_expand_activation (Acti (None, 8, 8, 1152)   0           block6b_expand_bn[0][0]          \n",
1422
      "__________________________________________________________________________________________________\n",
1423
      "block6b_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   28800       block6b_expand_activation[0][0]  \n",
1424
      "__________________________________________________________________________________________________\n",
1425
      "block6b_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block6b_dwconv[0][0]             \n",
1426
      "__________________________________________________________________________________________________\n",
1427
      "block6b_activation (Activation) (None, 8, 8, 1152)   0           block6b_bn[0][0]                 \n",
1428
      "__________________________________________________________________________________________________\n",
1429
      "block6b_se_squeeze (GlobalAvera (None, 1152)         0           block6b_activation[0][0]         \n",
1430
      "__________________________________________________________________________________________________\n",
1431
      "block6b_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block6b_se_squeeze[0][0]         \n",
1432
      "__________________________________________________________________________________________________\n",
1433
      "block6b_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block6b_se_reshape[0][0]         \n",
1434
      "__________________________________________________________________________________________________\n",
1435
      "block6b_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block6b_se_reduce[0][0]          \n",
1436
      "__________________________________________________________________________________________________\n",
1437
      "block6b_se_excite (Multiply)    (None, 8, 8, 1152)   0           block6b_activation[0][0]         \n",
1438
      "                                                                 block6b_se_expand[0][0]          \n",
1439
      "__________________________________________________________________________________________________\n",
1440
      "block6b_project_conv (Conv2D)   (None, 8, 8, 192)    221184      block6b_se_excite[0][0]          \n",
1441
      "__________________________________________________________________________________________________\n",
1442
      "block6b_project_bn (BatchNormal (None, 8, 8, 192)    768         block6b_project_conv[0][0]       \n",
1443
      "__________________________________________________________________________________________________\n",
1444
      "block6b_drop (FixedDropout)     (None, 8, 8, 192)    0           block6b_project_bn[0][0]         \n",
1445
      "__________________________________________________________________________________________________\n",
1446
      "block6b_add (Add)               (None, 8, 8, 192)    0           block6b_drop[0][0]               \n",
1447
      "                                                                 block6a_project_bn[0][0]         \n",
1448
      "__________________________________________________________________________________________________\n",
1449
      "block6c_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6b_add[0][0]                \n",
1450
      "__________________________________________________________________________________________________\n",
1451
      "block6c_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block6c_expand_conv[0][0]        \n",
1452
      "__________________________________________________________________________________________________\n",
1453
      "block6c_expand_activation (Acti (None, 8, 8, 1152)   0           block6c_expand_bn[0][0]          \n",
1454
      "__________________________________________________________________________________________________\n",
1455
      "block6c_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   28800       block6c_expand_activation[0][0]  \n",
1456
      "__________________________________________________________________________________________________\n",
1457
      "block6c_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block6c_dwconv[0][0]             \n",
1458
      "__________________________________________________________________________________________________\n",
1459
      "block6c_activation (Activation) (None, 8, 8, 1152)   0           block6c_bn[0][0]                 \n",
1460
      "__________________________________________________________________________________________________\n",
1461
      "block6c_se_squeeze (GlobalAvera (None, 1152)         0           block6c_activation[0][0]         \n",
1462
      "__________________________________________________________________________________________________\n",
1463
      "block6c_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block6c_se_squeeze[0][0]         \n",
1464
      "__________________________________________________________________________________________________\n",
1465
      "block6c_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block6c_se_reshape[0][0]         \n",
1466
      "__________________________________________________________________________________________________\n",
1467
      "block6c_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block6c_se_reduce[0][0]          \n",
1468
      "__________________________________________________________________________________________________\n",
1469
      "block6c_se_excite (Multiply)    (None, 8, 8, 1152)   0           block6c_activation[0][0]         \n",
1470
      "                                                                 block6c_se_expand[0][0]          \n",
1471
      "__________________________________________________________________________________________________\n",
1472
      "block6c_project_conv (Conv2D)   (None, 8, 8, 192)    221184      block6c_se_excite[0][0]          \n",
1473
      "__________________________________________________________________________________________________\n",
1474
      "block6c_project_bn (BatchNormal (None, 8, 8, 192)    768         block6c_project_conv[0][0]       \n",
1475
      "__________________________________________________________________________________________________\n",
1476
      "block6c_drop (FixedDropout)     (None, 8, 8, 192)    0           block6c_project_bn[0][0]         \n",
1477
      "__________________________________________________________________________________________________\n",
1478
      "block6c_add (Add)               (None, 8, 8, 192)    0           block6c_drop[0][0]               \n",
1479
      "                                                                 block6b_add[0][0]                \n",
1480
      "__________________________________________________________________________________________________\n",
1481
      "block6d_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6c_add[0][0]                \n",
1482
      "__________________________________________________________________________________________________\n",
1483
      "block6d_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block6d_expand_conv[0][0]        \n",
1484
      "__________________________________________________________________________________________________\n",
1485
      "block6d_expand_activation (Acti (None, 8, 8, 1152)   0           block6d_expand_bn[0][0]          \n",
1486
      "__________________________________________________________________________________________________\n",
1487
      "block6d_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   28800       block6d_expand_activation[0][0]  \n",
1488
      "__________________________________________________________________________________________________\n",
1489
      "block6d_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block6d_dwconv[0][0]             \n",
1490
      "__________________________________________________________________________________________________\n",
1491
      "block6d_activation (Activation) (None, 8, 8, 1152)   0           block6d_bn[0][0]                 \n",
1492
      "__________________________________________________________________________________________________\n",
1493
      "block6d_se_squeeze (GlobalAvera (None, 1152)         0           block6d_activation[0][0]         \n",
1494
      "__________________________________________________________________________________________________\n",
1495
      "block6d_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block6d_se_squeeze[0][0]         \n",
1496
      "__________________________________________________________________________________________________\n",
1497
      "block6d_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block6d_se_reshape[0][0]         \n",
1498
      "__________________________________________________________________________________________________\n",
1499
      "block6d_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block6d_se_reduce[0][0]          \n",
1500
      "__________________________________________________________________________________________________\n",
1501
      "block6d_se_excite (Multiply)    (None, 8, 8, 1152)   0           block6d_activation[0][0]         \n",
1502
      "                                                                 block6d_se_expand[0][0]          \n",
1503
      "__________________________________________________________________________________________________\n",
1504
      "block6d_project_conv (Conv2D)   (None, 8, 8, 192)    221184      block6d_se_excite[0][0]          \n",
1505
      "__________________________________________________________________________________________________\n",
1506
      "block6d_project_bn (BatchNormal (None, 8, 8, 192)    768         block6d_project_conv[0][0]       \n",
1507
      "__________________________________________________________________________________________________\n",
1508
      "block6d_drop (FixedDropout)     (None, 8, 8, 192)    0           block6d_project_bn[0][0]         \n",
1509
      "__________________________________________________________________________________________________\n",
1510
      "block6d_add (Add)               (None, 8, 8, 192)    0           block6d_drop[0][0]               \n",
1511
      "                                                                 block6c_add[0][0]                \n",
1512
      "__________________________________________________________________________________________________\n",
1513
      "block7a_expand_conv (Conv2D)    (None, 8, 8, 1152)   221184      block6d_add[0][0]                \n",
1514
      "__________________________________________________________________________________________________\n",
1515
      "block7a_expand_bn (BatchNormali (None, 8, 8, 1152)   4608        block7a_expand_conv[0][0]        \n",
1516
      "__________________________________________________________________________________________________\n",
1517
      "block7a_expand_activation (Acti (None, 8, 8, 1152)   0           block7a_expand_bn[0][0]          \n",
1518
      "__________________________________________________________________________________________________\n",
1519
      "block7a_dwconv (DepthwiseConv2D (None, 8, 8, 1152)   10368       block7a_expand_activation[0][0]  \n",
1520
      "__________________________________________________________________________________________________\n",
1521
      "block7a_bn (BatchNormalization) (None, 8, 8, 1152)   4608        block7a_dwconv[0][0]             \n",
1522
      "__________________________________________________________________________________________________\n",
1523
      "block7a_activation (Activation) (None, 8, 8, 1152)   0           block7a_bn[0][0]                 \n",
1524
      "__________________________________________________________________________________________________\n",
1525
      "block7a_se_squeeze (GlobalAvera (None, 1152)         0           block7a_activation[0][0]         \n",
1526
      "__________________________________________________________________________________________________\n",
1527
      "block7a_se_reshape (Reshape)    (None, 1, 1, 1152)   0           block7a_se_squeeze[0][0]         \n",
1528
      "__________________________________________________________________________________________________\n",
1529
      "block7a_se_reduce (Conv2D)      (None, 1, 1, 48)     55344       block7a_se_reshape[0][0]         \n",
1530
      "__________________________________________________________________________________________________\n",
1531
      "block7a_se_expand (Conv2D)      (None, 1, 1, 1152)   56448       block7a_se_reduce[0][0]          \n",
1532
      "__________________________________________________________________________________________________\n",
1533
      "block7a_se_excite (Multiply)    (None, 8, 8, 1152)   0           block7a_activation[0][0]         \n",
1534
      "                                                                 block7a_se_expand[0][0]          \n",
1535
      "__________________________________________________________________________________________________\n",
1536
      "block7a_project_conv (Conv2D)   (None, 8, 8, 320)    368640      block7a_se_excite[0][0]          \n",
1537
      "__________________________________________________________________________________________________\n",
1538
      "block7a_project_bn (BatchNormal (None, 8, 8, 320)    1280        block7a_project_conv[0][0]       \n",
1539
      "__________________________________________________________________________________________________\n",
1540
      "top_conv (Conv2D)               (None, 8, 8, 1280)   409600      block7a_project_bn[0][0]         \n",
1541
      "__________________________________________________________________________________________________\n",
1542
      "top_bn (BatchNormalization)     (None, 8, 8, 1280)   5120        top_conv[0][0]                   \n",
1543
      "__________________________________________________________________________________________________\n",
1544
      "top_activation (Activation)     (None, 8, 8, 1280)   0           top_bn[0][0]                     \n",
1545
      "__________________________________________________________________________________________________\n",
1546
      "avg_pool (GlobalAveragePooling2 (None, 1280)         0           top_activation[0][0]             \n",
1547
      "__________________________________________________________________________________________________\n",
1548
      "dropout_1 (Dropout)             (None, 1280)         0           avg_pool[0][0]                   \n",
1549
      "__________________________________________________________________________________________________\n",
1550
      "dense_1 (Dense)                 (None, 6)            7686        dropout_1[0][0]                  \n",
1551
      "==================================================================================================\n",
1552
      "Total params: 4,057,250\n",
1553
      "Trainable params: 4,015,234\n",
1554
      "Non-trainable params: 42,016\n",
1555
      "__________________________________________________________________________________________________\n"
1556
     ]
1557
    }
1558
   ],
1559
   "source": [
1560
    "base_model =  efn.EfficientNetB0(weights = 'imagenet', include_top = False, \\\n",
1561
    "                                 pooling = 'avg', input_shape = (HEIGHT, WIDTH, 3))\n",
1562
    "x = base_model.output\n",
1563
    "x = Dropout(0.125)(x)\n",
1564
    "output_layer = Dense(6, activation = 'sigmoid')(x)\n",
1565
    "model = Model(inputs=base_model.input, outputs=output_layer)\n",
1566
    "model.compile(optimizer = Adam(learning_rate = 0.0001), \n",
1567
    "                  loss = 'binary_crossentropy',\n",
1568
    "                  metrics = ['acc', tf.keras.metrics.AUC()])\n",
1569
    "model.summary()"
1570
   ]
1571
  },
1572
  {
1573
   "cell_type": "code",
1574
   "execution_count": 25,
1575
   "metadata": {},
1576
   "outputs": [
1577
    {
1578
     "data": {
1579
      "text/plain": [
1580
       "(636396, 40622)"
1581
      ]
1582
     },
1583
     "execution_count": 25,
1584
     "metadata": {},
1585
     "output_type": "execute_result"
1586
    }
1587
   ],
1588
   "source": [
1589
    "# https://github.com/trent-b/iterative-stratification\n",
1590
    "# Mutlilabel stratification\n",
1591
    "splits = MultilabelStratifiedShuffleSplit(n_splits = 2, test_size = TEST_SIZE, random_state = SEED)\n",
1592
    "file_names = train_final_df.index\n",
1593
    "labels = train_final_df.values\n",
1594
    "# Lets take only the first split\n",
1595
    "split = next(splits.split(file_names, labels))\n",
1596
    "train_idx = split[0]\n",
1597
    "valid_idx = split[1]\n",
1598
    "submission_predictions = []\n",
1599
    "len(train_idx), len(valid_idx)"
1600
   ]
1601
  },
1602
  {
1603
   "cell_type": "code",
1604
   "execution_count": 26,
1605
   "metadata": {},
1606
   "outputs": [],
1607
   "source": [
1608
    "# train data generator\n",
1609
    "data_generator_train = TrainDataGenerator(train_final_df.iloc[train_idx], \n",
1610
    "                                                train_final_df.iloc[train_idx], \n",
1611
    "                                                TRAIN_BATCH_SIZE, \n",
1612
    "                                                (WIDTH, HEIGHT),\n",
1613
    "                                                augment = True)\n",
1614
    "\n",
1615
    "# validation data generator\n",
1616
    "data_generator_val = TrainDataGenerator(train_final_df.iloc[valid_idx], \n",
1617
    "                                            train_final_df.iloc[valid_idx], \n",
1618
    "                                            VALID_BATCH_SIZE, \n",
1619
    "                                            (WIDTH, HEIGHT),\n",
1620
    "                                            augment = False)"
1621
   ]
1622
  },
1623
  {
1624
   "cell_type": "code",
1625
   "execution_count": 27,
1626
   "metadata": {},
1627
   "outputs": [
1628
    {
1629
     "data": {
1630
      "text/plain": [
1631
       "(19888, 635)"
1632
      ]
1633
     },
1634
     "execution_count": 27,
1635
     "metadata": {},
1636
     "output_type": "execute_result"
1637
    }
1638
   ],
1639
   "source": [
1640
    "len(data_generator_train), len(data_generator_val)"
1641
   ]
1642
  },
1643
  {
1644
   "cell_type": "markdown",
1645
   "metadata": {},
1646
   "source": [
1647
    "Competition evaluation metric is evaluated based on weighted log loss but we haven't given weights for each subtype but as per discussion from this thread https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/109526#latest-630190 any has a wieght of 2 than other types below sample is taken from the discussion threas"
1648
   ]
1649
  },
1650
  {
1651
   "cell_type": "code",
1652
   "execution_count": 28,
1653
   "metadata": {},
1654
   "outputs": [],
1655
   "source": [
1656
    "from keras import backend as K\n",
1657
    "\n",
1658
    "def weighted_log_loss(y_true, y_pred):\n",
1659
    "    \"\"\"\n",
1660
    "    Can be used as the loss function in model.compile()\n",
1661
    "    ---------------------------------------------------\n",
1662
    "    \"\"\"\n",
1663
    "    \n",
1664
    "    class_weights = np.array([2., 1., 1., 1., 1., 1.])\n",
1665
    "    \n",
1666
    "    eps = K.epsilon()\n",
1667
    "    \n",
1668
    "    y_pred = K.clip(y_pred, eps, 1.0-eps)\n",
1669
    "\n",
1670
    "    out = -(         y_true  * K.log(      y_pred) * class_weights\n",
1671
    "            + (1.0 - y_true) * K.log(1.0 - y_pred) * class_weights)\n",
1672
    "    \n",
1673
    "    return K.mean(out, axis=-1)\n",
1674
    "\n",
1675
    "\n",
1676
    "def _normalized_weighted_average(arr, weights=None):\n",
1677
    "    \"\"\"\n",
1678
    "    A simple Keras implementation that mimics that of \n",
1679
    "    numpy.average(), specifically for this competition\n",
1680
    "    \"\"\"\n",
1681
    "    \n",
1682
    "    if weights is not None:\n",
1683
    "        scl = K.sum(weights)\n",
1684
    "        weights = K.expand_dims(weights, axis=1)\n",
1685
    "        return K.sum(K.dot(arr, weights), axis=1) / scl\n",
1686
    "    return K.mean(arr, axis=1)\n",
1687
    "\n",
1688
    "\n",
1689
    "def weighted_loss(y_true, y_pred):\n",
1690
    "    \"\"\"\n",
1691
    "    Will be used as the metric in model.compile()\n",
1692
    "    ---------------------------------------------\n",
1693
    "    \n",
1694
    "    Similar to the custom loss function 'weighted_log_loss()' above\n",
1695
    "    but with normalized weights, which should be very similar \n",
1696
    "    to the official competition metric:\n",
1697
    "        https://www.kaggle.com/kambarakun/lb-probe-weights-n-of-positives-scoring\n",
1698
    "    and hence:\n",
1699
    "        sklearn.metrics.log_loss with sample weights\n",
1700
    "    \"\"\"\n",
1701
    "    \n",
1702
    "    class_weights = K.variable([2., 1., 1., 1., 1., 1.])\n",
1703
    "    \n",
1704
    "    eps = K.epsilon()\n",
1705
    "    \n",
1706
    "    y_pred = K.clip(y_pred, eps, 1.0-eps)\n",
1707
    "\n",
1708
    "    loss = -(        y_true  * K.log(      y_pred)\n",
1709
    "            + (1.0 - y_true) * K.log(1.0 - y_pred))\n",
1710
    "    \n",
1711
    "    loss_samples = _normalized_weighted_average(loss, class_weights)\n",
1712
    "    \n",
1713
    "    return K.mean(loss_samples)\n",
1714
    "\n",
1715
    "\n",
1716
    "def weighted_log_loss_metric(trues, preds):\n",
1717
    "    \"\"\"\n",
1718
    "    Will be used to calculate the log loss \n",
1719
    "    of the validation set in PredictionCheckpoint()\n",
1720
    "    ------------------------------------------\n",
1721
    "    \"\"\"\n",
1722
    "    class_weights = [2., 1., 1., 1., 1., 1.]\n",
1723
    "    \n",
1724
    "    epsilon = 1e-7\n",
1725
    "    \n",
1726
    "    preds = np.clip(preds, epsilon, 1-epsilon)\n",
1727
    "    loss = trues * np.log(preds) + (1 - trues) * np.log(1 - preds)\n",
1728
    "    loss_samples = np.average(loss, axis=1, weights=class_weights)\n",
1729
    "\n",
1730
    "    return - loss_samples.mean()"
1731
   ]
1732
  },
1733
  {
1734
   "cell_type": "code",
1735
   "execution_count": 29,
1736
   "metadata": {},
1737
   "outputs": [],
1738
   "source": [
1739
    "filepath=\"model.h5\"\n",
1740
    "checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, \\\n",
1741
    "                             save_best_only=True, mode='min')\n",
1742
    "\n",
1743
    "callbacks_list = [checkpoint]"
1744
   ]
1745
  },
1746
  {
1747
   "cell_type": "markdown",
1748
   "metadata": {},
1749
   "source": [
1750
    "For a single epoch we are going to train only last 5 layers of Efficient. Since we have a large number of images around 600k so its better to train the all the layers on the whole train dataset but due its high computation resources required to train we only goin to train last five layers on whole dataset and for rest of epochs we only train on a sample of dataset but will train all the layers."
1751
   ]
1752
  },
1753
  {
1754
   "cell_type": "code",
1755
   "execution_count": 30,
1756
   "metadata": {},
1757
   "outputs": [
1758
    {
1759
     "data": {
1760
      "text/plain": [
1761
       "False"
1762
      ]
1763
     },
1764
     "execution_count": 30,
1765
     "metadata": {},
1766
     "output_type": "execute_result"
1767
    }
1768
   ],
1769
   "source": [
1770
    "os.path.isfile('../input/orginal-087-eff/model.h5')"
1771
   ]
1772
  },
1773
  {
1774
   "cell_type": "code",
1775
   "execution_count": 32,
1776
   "metadata": {},
1777
   "outputs": [],
1778
   "source": [
1779
    "train=False\n",
1780
    "\n",
1781
    "if train:\n",
1782
    "    if not os.path.isfile('../input/orginal-087-eff/model.h5'):\n",
1783
    "        for layer in model.layers[:-5]:\n",
1784
    "            layer.trainable = False\n",
1785
    "        model.compile(optimizer = Adam(learning_rate = 0.0001), \n",
1786
    "                      loss = 'binary_crossentropy',\n",
1787
    "                      metrics = ['acc'])\n",
1788
    "\n",
1789
    "        model.fit_generator(generator = data_generator_train,\n",
1790
    "                            validation_data = data_generator_val,\n",
1791
    "                            epochs = 1,\n",
1792
    "                            callbacks = callbacks_list,\n",
1793
    "                            verbose = 1)"
1794
   ]
1795
  },
1796
  {
1797
   "cell_type": "code",
1798
   "execution_count": 33,
1799
   "metadata": {},
1800
   "outputs": [],
1801
   "source": [
1802
    "if train:\n",
1803
    "    for base_layer in model.layers[:-1]:\n",
1804
    "        base_layer.trainable = True\n",
1805
    "\n",
1806
    "    model.load_weights('model.h5')\n",
1807
    "\n",
1808
    "    model.compile(optimizer = Adam(learning_rate = 0.0004), \n",
1809
    "                      loss = 'binary_crossentropy',\n",
1810
    "                      metrics = ['acc'])\n",
1811
    "    model.fit_generator(generator = data_generator_train,\n",
1812
    "                            validation_data = data_generator_val,\n",
1813
    "                            steps_per_epoch=len(data_generator_train)/6,\n",
1814
    "                            epochs = 10,\n",
1815
    "                            callbacks = callbacks_list,\n",
1816
    "                            verbose = 1)"
1817
   ]
1818
  },
1819
  {
1820
   "cell_type": "code",
1821
   "execution_count": 34,
1822
   "metadata": {},
1823
   "outputs": [
1824
    {
1825
     "name": "stdout",
1826
     "output_type": "stream",
1827
     "text": [
1828
      "Collecting gdown\n",
1829
      "  Downloading https://files.pythonhosted.org/packages/b0/b4/a8e9d0b02bca6aa53087001abf064cc9992bda11bd6840875b8098d93573/gdown-3.8.3.tar.gz\n",
1830
      "Requirement already satisfied: filelock in /opt/conda/lib/python3.6/site-packages (from gdown) (3.0.12)\n",
1831
      "Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from gdown) (2.22.0)\n",
1832
      "Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from gdown) (1.12.0)\n",
1833
      "Requirement already satisfied: tqdm in /opt/conda/lib/python3.6/site-packages (from gdown) (4.36.1)\n",
1834
      "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2019.9.11)\n",
1835
      "Requirement already satisfied: idna<2.9,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2.8)\n",
1836
      "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (1.24.2)\n",
1837
      "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (3.0.4)\n",
1838
      "Building wheels for collected packages: gdown\n",
1839
      "  Building wheel for gdown (setup.py) ... \u001b[?25ldone\n",
1840
      "\u001b[?25h  Created wheel for gdown: filename=gdown-3.8.3-cp36-none-any.whl size=8850 sha256=14a9f4491a378ff8119e1ca63a536cd63c0f8e914ac97133e046e690719cf217\n",
1841
      "  Stored in directory: /tmp/.cache/pip/wheels/a7/9d/16/9e0bda9a327ff2cddaee8de48a27553fb1efce73133593d066\n",
1842
      "Successfully built gdown\n",
1843
      "Installing collected packages: gdown\n",
1844
      "Successfully installed gdown-3.8.3\n"
1845
     ]
1846
    }
1847
   ],
1848
   "source": [
1849
    "!pip install gdown"
1850
   ]
1851
  },
1852
  {
1853
   "cell_type": "code",
1854
   "execution_count": 35,
1855
   "metadata": {},
1856
   "outputs": [
1857
    {
1858
     "name": "stdout",
1859
     "output_type": "stream",
1860
     "text": [
1861
      "Downloading...\n",
1862
      "From: https://drive.google.com/uc?id=1OMWQjtnVkMKLQ3jG4RpUQR2IyimO-W46\n",
1863
      "To: /kaggle/working/model (2).h5\n",
1864
      "49.2MB [00:00, 135MB/s] \n"
1865
     ]
1866
    }
1867
   ],
1868
   "source": [
1869
    "!gdown \"https://drive.google.com/uc?id=1OMWQjtnVkMKLQ3jG4RpUQR2IyimO-W46\""
1870
   ]
1871
  },
1872
  {
1873
   "cell_type": "code",
1874
   "execution_count": 36,
1875
   "metadata": {},
1876
   "outputs": [],
1877
   "source": [
1878
    "!cp \"model (2).h5\" model.h5"
1879
   ]
1880
  },
1881
  {
1882
   "cell_type": "code",
1883
   "execution_count": 37,
1884
   "metadata": {},
1885
   "outputs": [
1886
    {
1887
     "name": "stdout",
1888
     "output_type": "stream",
1889
     "text": [
1890
      "1228/1228 [==============================] - 1048s 854ms/step\n"
1891
     ]
1892
    },
1893
    {
1894
     "data": {
1895
      "text/plain": [
1896
       "(78592, 6)"
1897
      ]
1898
     },
1899
     "execution_count": 37,
1900
     "metadata": {},
1901
     "output_type": "execute_result"
1902
    }
1903
   ],
1904
   "source": [
1905
    "model.load_weights('model.h5')\n",
1906
    "\n",
1907
    "preds = model.predict_generator(TestDataGenerator(test_df.index, None, VALID_BATCH_SIZE, \\\n",
1908
    "                                                  (WIDTH, HEIGHT), path_test_img), \n",
1909
    "                                verbose=1)\n",
1910
    "preds.shape"
1911
   ]
1912
  },
1913
  {
1914
   "cell_type": "code",
1915
   "execution_count": 38,
1916
   "metadata": {},
1917
   "outputs": [],
1918
   "source": [
1919
    "from tqdm import tqdm"
1920
   ]
1921
  },
1922
  {
1923
   "cell_type": "code",
1924
   "execution_count": 39,
1925
   "metadata": {},
1926
   "outputs": [],
1927
   "source": [
1928
    "cols = list(train_final_df.columns)"
1929
   ]
1930
  },
1931
  {
1932
   "cell_type": "code",
1933
   "execution_count": 40,
1934
   "metadata": {},
1935
   "outputs": [
1936
    {
1937
     "name": "stderr",
1938
     "output_type": "stream",
1939
     "text": [
1940
      "100%|█████████▉| 78545/78592 [00:01<00:00, 48430.17it/s]\n"
1941
     ]
1942
    }
1943
   ],
1944
   "source": [
1945
    "# We have preditions for each of the image\n",
1946
    "# We need to make 6 rows for each of file according to the subtype\n",
1947
    "ids = []\n",
1948
    "values = []\n",
1949
    "for i, j in tqdm(zip(preds, test_df.index.to_list()), total=preds.shape[0]):\n",
1950
    "#     print(i, j)\n",
1951
    "    # i=[any_prob, epidural_prob, intraparenchymal_prob, intraventricular_prob, subarachnoid_prob, subdural_prob]\n",
1952
    "    # j = filename ==> ID_xyz.dcm\n",
1953
    "    for k in range(i.shape[0]):\n",
1954
    "        ids.append([j.replace('.dcm', '_' + cols[k])])\n",
1955
    "        values.append(i[k])      "
1956
   ]
1957
  },
1958
  {
1959
   "cell_type": "code",
1960
   "execution_count": 41,
1961
   "metadata": {},
1962
   "outputs": [
1963
    {
1964
     "data": {
1965
      "text/html": [
1966
       "<div>\n",
1967
       "<style scoped>\n",
1968
       "    .dataframe tbody tr th:only-of-type {\n",
1969
       "        vertical-align: middle;\n",
1970
       "    }\n",
1971
       "\n",
1972
       "    .dataframe tbody tr th {\n",
1973
       "        vertical-align: top;\n",
1974
       "    }\n",
1975
       "\n",
1976
       "    .dataframe thead th {\n",
1977
       "        text-align: right;\n",
1978
       "    }\n",
1979
       "</style>\n",
1980
       "<table border=\"1\" class=\"dataframe\">\n",
1981
       "  <thead>\n",
1982
       "    <tr style=\"text-align: right;\">\n",
1983
       "      <th></th>\n",
1984
       "      <th>0</th>\n",
1985
       "    </tr>\n",
1986
       "  </thead>\n",
1987
       "  <tbody>\n",
1988
       "    <tr>\n",
1989
       "      <th>0</th>\n",
1990
       "      <td>ID_000012eaf_any</td>\n",
1991
       "    </tr>\n",
1992
       "    <tr>\n",
1993
       "      <th>1</th>\n",
1994
       "      <td>ID_000012eaf_epidural</td>\n",
1995
       "    </tr>\n",
1996
       "    <tr>\n",
1997
       "      <th>2</th>\n",
1998
       "      <td>ID_000012eaf_intraparenchymal</td>\n",
1999
       "    </tr>\n",
2000
       "    <tr>\n",
2001
       "      <th>3</th>\n",
2002
       "      <td>ID_000012eaf_intraventricular</td>\n",
2003
       "    </tr>\n",
2004
       "    <tr>\n",
2005
       "      <th>4</th>\n",
2006
       "      <td>ID_000012eaf_subarachnoid</td>\n",
2007
       "    </tr>\n",
2008
       "  </tbody>\n",
2009
       "</table>\n",
2010
       "</div>"
2011
      ],
2012
      "text/plain": [
2013
       "                               0\n",
2014
       "0               ID_000012eaf_any\n",
2015
       "1          ID_000012eaf_epidural\n",
2016
       "2  ID_000012eaf_intraparenchymal\n",
2017
       "3  ID_000012eaf_intraventricular\n",
2018
       "4      ID_000012eaf_subarachnoid"
2019
      ]
2020
     },
2021
     "execution_count": 41,
2022
     "metadata": {},
2023
     "output_type": "execute_result"
2024
    }
2025
   ],
2026
   "source": [
2027
    "df = pd.DataFrame(data=ids)\n",
2028
    "df.head()"
2029
   ]
2030
  },
2031
  {
2032
   "cell_type": "code",
2033
   "execution_count": 42,
2034
   "metadata": {},
2035
   "outputs": [
2036
    {
2037
     "data": {
2038
      "text/html": [
2039
       "<div>\n",
2040
       "<style scoped>\n",
2041
       "    .dataframe tbody tr th:only-of-type {\n",
2042
       "        vertical-align: middle;\n",
2043
       "    }\n",
2044
       "\n",
2045
       "    .dataframe tbody tr th {\n",
2046
       "        vertical-align: top;\n",
2047
       "    }\n",
2048
       "\n",
2049
       "    .dataframe thead th {\n",
2050
       "        text-align: right;\n",
2051
       "    }\n",
2052
       "</style>\n",
2053
       "<table border=\"1\" class=\"dataframe\">\n",
2054
       "  <thead>\n",
2055
       "    <tr style=\"text-align: right;\">\n",
2056
       "      <th></th>\n",
2057
       "      <th>ID</th>\n",
2058
       "      <th>Label</th>\n",
2059
       "    </tr>\n",
2060
       "  </thead>\n",
2061
       "  <tbody>\n",
2062
       "    <tr>\n",
2063
       "      <th>0</th>\n",
2064
       "      <td>ID_28fbab7eb_epidural</td>\n",
2065
       "      <td>0.5</td>\n",
2066
       "    </tr>\n",
2067
       "    <tr>\n",
2068
       "      <th>1</th>\n",
2069
       "      <td>ID_28fbab7eb_intraparenchymal</td>\n",
2070
       "      <td>0.5</td>\n",
2071
       "    </tr>\n",
2072
       "    <tr>\n",
2073
       "      <th>2</th>\n",
2074
       "      <td>ID_28fbab7eb_intraventricular</td>\n",
2075
       "      <td>0.5</td>\n",
2076
       "    </tr>\n",
2077
       "    <tr>\n",
2078
       "      <th>3</th>\n",
2079
       "      <td>ID_28fbab7eb_subarachnoid</td>\n",
2080
       "      <td>0.5</td>\n",
2081
       "    </tr>\n",
2082
       "    <tr>\n",
2083
       "      <th>4</th>\n",
2084
       "      <td>ID_28fbab7eb_subdural</td>\n",
2085
       "      <td>0.5</td>\n",
2086
       "    </tr>\n",
2087
       "  </tbody>\n",
2088
       "</table>\n",
2089
       "</div>"
2090
      ],
2091
      "text/plain": [
2092
       "                              ID  Label\n",
2093
       "0          ID_28fbab7eb_epidural    0.5\n",
2094
       "1  ID_28fbab7eb_intraparenchymal    0.5\n",
2095
       "2  ID_28fbab7eb_intraventricular    0.5\n",
2096
       "3      ID_28fbab7eb_subarachnoid    0.5\n",
2097
       "4          ID_28fbab7eb_subdural    0.5"
2098
      ]
2099
     },
2100
     "execution_count": 42,
2101
     "metadata": {},
2102
     "output_type": "execute_result"
2103
    }
2104
   ],
2105
   "source": [
2106
    "sample_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n",
2107
    "sample_df.head()"
2108
   ]
2109
  },
2110
  {
2111
   "cell_type": "code",
2112
   "execution_count": 43,
2113
   "metadata": {},
2114
   "outputs": [
2115
    {
2116
     "data": {
2117
      "text/html": [
2118
       "<div>\n",
2119
       "<style scoped>\n",
2120
       "    .dataframe tbody tr th:only-of-type {\n",
2121
       "        vertical-align: middle;\n",
2122
       "    }\n",
2123
       "\n",
2124
       "    .dataframe tbody tr th {\n",
2125
       "        vertical-align: top;\n",
2126
       "    }\n",
2127
       "\n",
2128
       "    .dataframe thead th {\n",
2129
       "        text-align: right;\n",
2130
       "    }\n",
2131
       "</style>\n",
2132
       "<table border=\"1\" class=\"dataframe\">\n",
2133
       "  <thead>\n",
2134
       "    <tr style=\"text-align: right;\">\n",
2135
       "      <th></th>\n",
2136
       "      <th>ID</th>\n",
2137
       "      <th>Label</th>\n",
2138
       "    </tr>\n",
2139
       "  </thead>\n",
2140
       "  <tbody>\n",
2141
       "    <tr>\n",
2142
       "      <th>0</th>\n",
2143
       "      <td>ID_000012eaf_any</td>\n",
2144
       "      <td>0.029101</td>\n",
2145
       "    </tr>\n",
2146
       "    <tr>\n",
2147
       "      <th>1</th>\n",
2148
       "      <td>ID_000012eaf_epidural</td>\n",
2149
       "      <td>0.001475</td>\n",
2150
       "    </tr>\n",
2151
       "    <tr>\n",
2152
       "      <th>2</th>\n",
2153
       "      <td>ID_000012eaf_intraparenchymal</td>\n",
2154
       "      <td>0.001740</td>\n",
2155
       "    </tr>\n",
2156
       "    <tr>\n",
2157
       "      <th>3</th>\n",
2158
       "      <td>ID_000012eaf_intraventricular</td>\n",
2159
       "      <td>0.001194</td>\n",
2160
       "    </tr>\n",
2161
       "    <tr>\n",
2162
       "      <th>4</th>\n",
2163
       "      <td>ID_000012eaf_subarachnoid</td>\n",
2164
       "      <td>0.001531</td>\n",
2165
       "    </tr>\n",
2166
       "  </tbody>\n",
2167
       "</table>\n",
2168
       "</div>"
2169
      ],
2170
      "text/plain": [
2171
       "                              ID     Label\n",
2172
       "0               ID_000012eaf_any  0.029101\n",
2173
       "1          ID_000012eaf_epidural  0.001475\n",
2174
       "2  ID_000012eaf_intraparenchymal  0.001740\n",
2175
       "3  ID_000012eaf_intraventricular  0.001194\n",
2176
       "4      ID_000012eaf_subarachnoid  0.001531"
2177
      ]
2178
     },
2179
     "execution_count": 43,
2180
     "metadata": {},
2181
     "output_type": "execute_result"
2182
    }
2183
   ],
2184
   "source": [
2185
    "df['Label'] = values\n",
2186
    "df.columns = sample_df.columns\n",
2187
    "df.head()"
2188
   ]
2189
  },
2190
  {
2191
   "cell_type": "code",
2192
   "execution_count": 44,
2193
   "metadata": {},
2194
   "outputs": [],
2195
   "source": [
2196
    "df.to_csv('submission.csv', index=False)"
2197
   ]
2198
  },
2199
  {
2200
   "cell_type": "code",
2201
   "execution_count": 45,
2202
   "metadata": {},
2203
   "outputs": [
2204
    {
2205
     "data": {
2206
      "text/html": [
2207
       "<a href=submission.csv>Download CSV file</a>"
2208
      ],
2209
      "text/plain": [
2210
       "<IPython.core.display.HTML object>"
2211
      ]
2212
     },
2213
     "execution_count": 45,
2214
     "metadata": {},
2215
     "output_type": "execute_result"
2216
    }
2217
   ],
2218
   "source": [
2219
    "create_download_link(filename='submission.csv')"
2220
   ]
2221
  }
2222
 ],
2223
 "metadata": {
2224
  "kernelspec": {
2225
   "display_name": "Python 3",
2226
   "language": "python",
2227
   "name": "python3"
2228
  },
2229
  "language_info": {
2230
   "codemirror_mode": {
2231
    "name": "ipython",
2232
    "version": 3
2233
   },
2234
   "file_extension": ".py",
2235
   "mimetype": "text/x-python",
2236
   "name": "python",
2237
   "nbconvert_exporter": "python",
2238
   "pygments_lexer": "ipython3",
2239
   "version": "3.6.5"
2240
  }
2241
 },
2242
 "nbformat": 4,
2243
 "nbformat_minor": 1
2244
}