|
a |
|
b/notebooks/04-Efficient B0 Brain+Subdural Windowed Image.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# RSNA Intracranial Hemorrhage Detection " |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"<b>Competition Overview</b><br/><br/>\n", |
|
|
15 |
"Intracranial hemorrhage, bleeding that occurs inside the cranium, is a serious health problem requiring rapid and often intensive medical treatment. For example, intracranial hemorrhages account for approximately 10% of strokes in the U.S., where stroke is the fifth-leading cause of death. Identifying the location and type of any hemorrhage present is a critical step in treating the patient.\n", |
|
|
16 |
"\n", |
|
|
17 |
"Diagnosis requires an urgent procedure. When a patient shows acute neurological symptoms such as severe headache or loss of consciousness, highly trained specialists review medical images of the patient’s cranium to look for the presence, location and type of hemorrhage. The process is complicated and often time consuming." |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "markdown", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [ |
|
|
24 |
"<b>What am i predicting?</b><br/><br/>\n", |
|
|
25 |
"In this competition our goal is to predict intracranial hemorrhage and its subtypes. Given an image the we need to predict probablity of each subtype. This indicates its a multilabel classification problem." |
|
|
26 |
] |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "markdown", |
|
|
30 |
"metadata": {}, |
|
|
31 |
"source": [ |
|
|
32 |
"<b>Competition Evaluation Metric</b><br/><br/>\n", |
|
|
33 |
"Evaluation metric is weighted multi-label logarithmic loss. So for given image we need to predict probality for each subtype. There is also an any label, which indicates that a hemorrhage of ANY kind exists in the image. The any label is weighted more highly than specific hemorrhage sub-types.\n", |
|
|
34 |
"\n", |
|
|
35 |
"<b>Note:</b>The weights for each subtype for calculating weighted multi-label logarithmic loss is **not** given as part of the competition. We will be using binary cross entropy loss as weights are not available" |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "markdown", |
|
|
40 |
"metadata": {}, |
|
|
41 |
"source": [ |
|
|
42 |
"<b>Dataset Description</b>\n", |
|
|
43 |
"\n", |
|
|
44 |
"The dataset is divided into two parts\n", |
|
|
45 |
"\n", |
|
|
46 |
"1. Train\n", |
|
|
47 |
"2. Test\n", |
|
|
48 |
"\n", |
|
|
49 |
"**1. Train**\n", |
|
|
50 |
"Number of rows: 40,45,548 records.\n", |
|
|
51 |
"Number of columns: 2\n", |
|
|
52 |
"\n", |
|
|
53 |
"Columns:\n", |
|
|
54 |
"\n", |
|
|
55 |
"**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n", |
|
|
56 |
"\n", |
|
|
57 |
"Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name\n", |
|
|
58 |
"\n", |
|
|
59 |
"**Label**: The target label whether that sub-type of hemorrhage (or any hemorrhage in the case of any) exists in the indicated image. 1 --> Exists and 0 --> Doesn't exist.\n", |
|
|
60 |
"\n", |
|
|
61 |
"**2. Test**\n", |
|
|
62 |
"Number of rows: 4,71,270 records.\n", |
|
|
63 |
"\n", |
|
|
64 |
"Columns:\n", |
|
|
65 |
"\n", |
|
|
66 |
"**Id**: An image Id. Each Id corresponds to a unique image, and will contain an underscore.\n", |
|
|
67 |
"\n", |
|
|
68 |
"Example: ID_28fbab7eb_epidural. So the Id consists of two parts one is image file id ID_28fbab7eb and the other is sub type name" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": 1, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [ |
|
|
76 |
{ |
|
|
77 |
"name": "stderr", |
|
|
78 |
"output_type": "stream", |
|
|
79 |
"text": [ |
|
|
80 |
"Using TensorFlow backend.\n" |
|
|
81 |
] |
|
|
82 |
} |
|
|
83 |
], |
|
|
84 |
"source": [ |
|
|
85 |
"import numpy as np\n", |
|
|
86 |
"import pandas as pd\n", |
|
|
87 |
"import pydicom\n", |
|
|
88 |
"import os\n", |
|
|
89 |
"import glob\n", |
|
|
90 |
"import random\n", |
|
|
91 |
"import cv2\n", |
|
|
92 |
"import tensorflow as tf\n", |
|
|
93 |
"from math import ceil, floor\n", |
|
|
94 |
"from tqdm import tqdm\n", |
|
|
95 |
"from imgaug import augmenters as iaa\n", |
|
|
96 |
"import matplotlib.pyplot as plt\n", |
|
|
97 |
"from math import ceil, floor\n", |
|
|
98 |
"import keras\n", |
|
|
99 |
"import keras.backend as K\n", |
|
|
100 |
"from keras.callbacks import Callback, ModelCheckpoint\n", |
|
|
101 |
"from keras.layers import Dense, Flatten, Dropout\n", |
|
|
102 |
"from keras.models import Model, load_model\n", |
|
|
103 |
"from keras.utils import Sequence\n", |
|
|
104 |
"from keras.losses import binary_crossentropy\n", |
|
|
105 |
"from keras.optimizers import Adam" |
|
|
106 |
] |
|
|
107 |
}, |
|
|
108 |
{ |
|
|
109 |
"cell_type": "code", |
|
|
110 |
"execution_count": 2, |
|
|
111 |
"metadata": {}, |
|
|
112 |
"outputs": [], |
|
|
113 |
"source": [ |
|
|
114 |
"# Random Seed\n", |
|
|
115 |
"SEED = 42\n", |
|
|
116 |
"np.random.seed(SEED)\n", |
|
|
117 |
"\n", |
|
|
118 |
"# some constants\n", |
|
|
119 |
"TEST_SIZE = 0.06\n", |
|
|
120 |
"HEIGHT = 256\n", |
|
|
121 |
"WIDTH = 256\n", |
|
|
122 |
"TRAIN_BATCH_SIZE = 32\n", |
|
|
123 |
"VALID_BATCH_SIZE = 64\n", |
|
|
124 |
"\n", |
|
|
125 |
"# Train and Test folders\n", |
|
|
126 |
"input_folder = '../input/rsna-intracranial-hemorrhage-detection/'\n", |
|
|
127 |
"path_train_img = input_folder + 'stage_1_train_images/'\n", |
|
|
128 |
"path_test_img = input_folder + 'stage_1_test_images/'" |
|
|
129 |
] |
|
|
130 |
}, |
|
|
131 |
{ |
|
|
132 |
"cell_type": "code", |
|
|
133 |
"execution_count": 3, |
|
|
134 |
"metadata": {}, |
|
|
135 |
"outputs": [ |
|
|
136 |
{ |
|
|
137 |
"data": { |
|
|
138 |
"text/html": [ |
|
|
139 |
"<div>\n", |
|
|
140 |
"<style scoped>\n", |
|
|
141 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
142 |
" vertical-align: middle;\n", |
|
|
143 |
" }\n", |
|
|
144 |
"\n", |
|
|
145 |
" .dataframe tbody tr th {\n", |
|
|
146 |
" vertical-align: top;\n", |
|
|
147 |
" }\n", |
|
|
148 |
"\n", |
|
|
149 |
" .dataframe thead th {\n", |
|
|
150 |
" text-align: right;\n", |
|
|
151 |
" }\n", |
|
|
152 |
"</style>\n", |
|
|
153 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
154 |
" <thead>\n", |
|
|
155 |
" <tr style=\"text-align: right;\">\n", |
|
|
156 |
" <th></th>\n", |
|
|
157 |
" <th>ID</th>\n", |
|
|
158 |
" <th>Label</th>\n", |
|
|
159 |
" </tr>\n", |
|
|
160 |
" </thead>\n", |
|
|
161 |
" <tbody>\n", |
|
|
162 |
" <tr>\n", |
|
|
163 |
" <th>0</th>\n", |
|
|
164 |
" <td>ID_63eb1e259_epidural</td>\n", |
|
|
165 |
" <td>0</td>\n", |
|
|
166 |
" </tr>\n", |
|
|
167 |
" <tr>\n", |
|
|
168 |
" <th>1</th>\n", |
|
|
169 |
" <td>ID_63eb1e259_intraparenchymal</td>\n", |
|
|
170 |
" <td>0</td>\n", |
|
|
171 |
" </tr>\n", |
|
|
172 |
" <tr>\n", |
|
|
173 |
" <th>2</th>\n", |
|
|
174 |
" <td>ID_63eb1e259_intraventricular</td>\n", |
|
|
175 |
" <td>0</td>\n", |
|
|
176 |
" </tr>\n", |
|
|
177 |
" <tr>\n", |
|
|
178 |
" <th>3</th>\n", |
|
|
179 |
" <td>ID_63eb1e259_subarachnoid</td>\n", |
|
|
180 |
" <td>0</td>\n", |
|
|
181 |
" </tr>\n", |
|
|
182 |
" <tr>\n", |
|
|
183 |
" <th>4</th>\n", |
|
|
184 |
" <td>ID_63eb1e259_subdural</td>\n", |
|
|
185 |
" <td>0</td>\n", |
|
|
186 |
" </tr>\n", |
|
|
187 |
" </tbody>\n", |
|
|
188 |
"</table>\n", |
|
|
189 |
"</div>" |
|
|
190 |
], |
|
|
191 |
"text/plain": [ |
|
|
192 |
" ID Label\n", |
|
|
193 |
"0 ID_63eb1e259_epidural 0\n", |
|
|
194 |
"1 ID_63eb1e259_intraparenchymal 0\n", |
|
|
195 |
"2 ID_63eb1e259_intraventricular 0\n", |
|
|
196 |
"3 ID_63eb1e259_subarachnoid 0\n", |
|
|
197 |
"4 ID_63eb1e259_subdural 0" |
|
|
198 |
] |
|
|
199 |
}, |
|
|
200 |
"execution_count": 3, |
|
|
201 |
"metadata": {}, |
|
|
202 |
"output_type": "execute_result" |
|
|
203 |
} |
|
|
204 |
], |
|
|
205 |
"source": [ |
|
|
206 |
"train_df = pd.read_csv(input_folder + 'stage_1_train.csv')\n", |
|
|
207 |
"train_df.head()" |
|
|
208 |
] |
|
|
209 |
}, |
|
|
210 |
{ |
|
|
211 |
"cell_type": "code", |
|
|
212 |
"execution_count": 4, |
|
|
213 |
"metadata": {}, |
|
|
214 |
"outputs": [ |
|
|
215 |
{ |
|
|
216 |
"data": { |
|
|
217 |
"text/html": [ |
|
|
218 |
"<div>\n", |
|
|
219 |
"<style scoped>\n", |
|
|
220 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
221 |
" vertical-align: middle;\n", |
|
|
222 |
" }\n", |
|
|
223 |
"\n", |
|
|
224 |
" .dataframe tbody tr th {\n", |
|
|
225 |
" vertical-align: top;\n", |
|
|
226 |
" }\n", |
|
|
227 |
"\n", |
|
|
228 |
" .dataframe thead th {\n", |
|
|
229 |
" text-align: right;\n", |
|
|
230 |
" }\n", |
|
|
231 |
"</style>\n", |
|
|
232 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
233 |
" <thead>\n", |
|
|
234 |
" <tr style=\"text-align: right;\">\n", |
|
|
235 |
" <th></th>\n", |
|
|
236 |
" <th>ID</th>\n", |
|
|
237 |
" <th>Label</th>\n", |
|
|
238 |
" <th>sub_type</th>\n", |
|
|
239 |
" <th>file_name</th>\n", |
|
|
240 |
" </tr>\n", |
|
|
241 |
" </thead>\n", |
|
|
242 |
" <tbody>\n", |
|
|
243 |
" <tr>\n", |
|
|
244 |
" <th>0</th>\n", |
|
|
245 |
" <td>ID_63eb1e259_epidural</td>\n", |
|
|
246 |
" <td>0</td>\n", |
|
|
247 |
" <td>epidural</td>\n", |
|
|
248 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
249 |
" </tr>\n", |
|
|
250 |
" <tr>\n", |
|
|
251 |
" <th>1</th>\n", |
|
|
252 |
" <td>ID_63eb1e259_intraparenchymal</td>\n", |
|
|
253 |
" <td>0</td>\n", |
|
|
254 |
" <td>intraparenchymal</td>\n", |
|
|
255 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
256 |
" </tr>\n", |
|
|
257 |
" <tr>\n", |
|
|
258 |
" <th>2</th>\n", |
|
|
259 |
" <td>ID_63eb1e259_intraventricular</td>\n", |
|
|
260 |
" <td>0</td>\n", |
|
|
261 |
" <td>intraventricular</td>\n", |
|
|
262 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
263 |
" </tr>\n", |
|
|
264 |
" <tr>\n", |
|
|
265 |
" <th>3</th>\n", |
|
|
266 |
" <td>ID_63eb1e259_subarachnoid</td>\n", |
|
|
267 |
" <td>0</td>\n", |
|
|
268 |
" <td>subarachnoid</td>\n", |
|
|
269 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
270 |
" </tr>\n", |
|
|
271 |
" <tr>\n", |
|
|
272 |
" <th>4</th>\n", |
|
|
273 |
" <td>ID_63eb1e259_subdural</td>\n", |
|
|
274 |
" <td>0</td>\n", |
|
|
275 |
" <td>subdural</td>\n", |
|
|
276 |
" <td>ID_63eb1e259.dcm</td>\n", |
|
|
277 |
" </tr>\n", |
|
|
278 |
" </tbody>\n", |
|
|
279 |
"</table>\n", |
|
|
280 |
"</div>" |
|
|
281 |
], |
|
|
282 |
"text/plain": [ |
|
|
283 |
" ID Label sub_type file_name\n", |
|
|
284 |
"0 ID_63eb1e259_epidural 0 epidural ID_63eb1e259.dcm\n", |
|
|
285 |
"1 ID_63eb1e259_intraparenchymal 0 intraparenchymal ID_63eb1e259.dcm\n", |
|
|
286 |
"2 ID_63eb1e259_intraventricular 0 intraventricular ID_63eb1e259.dcm\n", |
|
|
287 |
"3 ID_63eb1e259_subarachnoid 0 subarachnoid ID_63eb1e259.dcm\n", |
|
|
288 |
"4 ID_63eb1e259_subdural 0 subdural ID_63eb1e259.dcm" |
|
|
289 |
] |
|
|
290 |
}, |
|
|
291 |
"execution_count": 4, |
|
|
292 |
"metadata": {}, |
|
|
293 |
"output_type": "execute_result" |
|
|
294 |
} |
|
|
295 |
], |
|
|
296 |
"source": [ |
|
|
297 |
"# extract subtype\n", |
|
|
298 |
"train_df['sub_type'] = train_df['ID'].apply(lambda x: x.split('_')[-1])\n", |
|
|
299 |
"# extract filename\n", |
|
|
300 |
"train_df['file_name'] = train_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n", |
|
|
301 |
"train_df.head()" |
|
|
302 |
] |
|
|
303 |
}, |
|
|
304 |
{ |
|
|
305 |
"cell_type": "code", |
|
|
306 |
"execution_count": 5, |
|
|
307 |
"metadata": {}, |
|
|
308 |
"outputs": [ |
|
|
309 |
{ |
|
|
310 |
"data": { |
|
|
311 |
"text/plain": [ |
|
|
312 |
"(4045572, 4)" |
|
|
313 |
] |
|
|
314 |
}, |
|
|
315 |
"execution_count": 5, |
|
|
316 |
"metadata": {}, |
|
|
317 |
"output_type": "execute_result" |
|
|
318 |
} |
|
|
319 |
], |
|
|
320 |
"source": [ |
|
|
321 |
"train_df.shape" |
|
|
322 |
] |
|
|
323 |
}, |
|
|
324 |
{ |
|
|
325 |
"cell_type": "code", |
|
|
326 |
"execution_count": 6, |
|
|
327 |
"metadata": {}, |
|
|
328 |
"outputs": [ |
|
|
329 |
{ |
|
|
330 |
"data": { |
|
|
331 |
"text/plain": [ |
|
|
332 |
"(4045548, 4)" |
|
|
333 |
] |
|
|
334 |
}, |
|
|
335 |
"execution_count": 6, |
|
|
336 |
"metadata": {}, |
|
|
337 |
"output_type": "execute_result" |
|
|
338 |
} |
|
|
339 |
], |
|
|
340 |
"source": [ |
|
|
341 |
"# remove duplicates\n", |
|
|
342 |
"train_df.drop_duplicates(['Label', 'sub_type', 'file_name'], inplace=True)\n", |
|
|
343 |
"train_df.shape" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "code", |
|
|
348 |
"execution_count": 7, |
|
|
349 |
"metadata": {}, |
|
|
350 |
"outputs": [ |
|
|
351 |
{ |
|
|
352 |
"name": "stdout", |
|
|
353 |
"output_type": "stream", |
|
|
354 |
"text": [ |
|
|
355 |
"Number of train images availabe: 674258\n" |
|
|
356 |
] |
|
|
357 |
} |
|
|
358 |
], |
|
|
359 |
"source": [ |
|
|
360 |
"print(\"Number of train images availabe:\", len(os.listdir(path_train_img)))" |
|
|
361 |
] |
|
|
362 |
}, |
|
|
363 |
{ |
|
|
364 |
"cell_type": "code", |
|
|
365 |
"execution_count": 8, |
|
|
366 |
"metadata": {}, |
|
|
367 |
"outputs": [ |
|
|
368 |
{ |
|
|
369 |
"data": { |
|
|
370 |
"text/html": [ |
|
|
371 |
"<div>\n", |
|
|
372 |
"<style scoped>\n", |
|
|
373 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
374 |
" vertical-align: middle;\n", |
|
|
375 |
" }\n", |
|
|
376 |
"\n", |
|
|
377 |
" .dataframe tbody tr th {\n", |
|
|
378 |
" vertical-align: top;\n", |
|
|
379 |
" }\n", |
|
|
380 |
"\n", |
|
|
381 |
" .dataframe thead th {\n", |
|
|
382 |
" text-align: right;\n", |
|
|
383 |
" }\n", |
|
|
384 |
"</style>\n", |
|
|
385 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
386 |
" <thead>\n", |
|
|
387 |
" <tr style=\"text-align: right;\">\n", |
|
|
388 |
" <th>sub_type</th>\n", |
|
|
389 |
" <th>any</th>\n", |
|
|
390 |
" <th>epidural</th>\n", |
|
|
391 |
" <th>intraparenchymal</th>\n", |
|
|
392 |
" <th>intraventricular</th>\n", |
|
|
393 |
" <th>subarachnoid</th>\n", |
|
|
394 |
" <th>subdural</th>\n", |
|
|
395 |
" </tr>\n", |
|
|
396 |
" <tr>\n", |
|
|
397 |
" <th>file_name</th>\n", |
|
|
398 |
" <th></th>\n", |
|
|
399 |
" <th></th>\n", |
|
|
400 |
" <th></th>\n", |
|
|
401 |
" <th></th>\n", |
|
|
402 |
" <th></th>\n", |
|
|
403 |
" <th></th>\n", |
|
|
404 |
" </tr>\n", |
|
|
405 |
" </thead>\n", |
|
|
406 |
" <tbody>\n", |
|
|
407 |
" <tr>\n", |
|
|
408 |
" <th>ID_000039fa0.dcm</th>\n", |
|
|
409 |
" <td>0</td>\n", |
|
|
410 |
" <td>0</td>\n", |
|
|
411 |
" <td>0</td>\n", |
|
|
412 |
" <td>0</td>\n", |
|
|
413 |
" <td>0</td>\n", |
|
|
414 |
" <td>0</td>\n", |
|
|
415 |
" </tr>\n", |
|
|
416 |
" <tr>\n", |
|
|
417 |
" <th>ID_00005679d.dcm</th>\n", |
|
|
418 |
" <td>0</td>\n", |
|
|
419 |
" <td>0</td>\n", |
|
|
420 |
" <td>0</td>\n", |
|
|
421 |
" <td>0</td>\n", |
|
|
422 |
" <td>0</td>\n", |
|
|
423 |
" <td>0</td>\n", |
|
|
424 |
" </tr>\n", |
|
|
425 |
" <tr>\n", |
|
|
426 |
" <th>ID_00008ce3c.dcm</th>\n", |
|
|
427 |
" <td>0</td>\n", |
|
|
428 |
" <td>0</td>\n", |
|
|
429 |
" <td>0</td>\n", |
|
|
430 |
" <td>0</td>\n", |
|
|
431 |
" <td>0</td>\n", |
|
|
432 |
" <td>0</td>\n", |
|
|
433 |
" </tr>\n", |
|
|
434 |
" <tr>\n", |
|
|
435 |
" <th>ID_0000950d7.dcm</th>\n", |
|
|
436 |
" <td>0</td>\n", |
|
|
437 |
" <td>0</td>\n", |
|
|
438 |
" <td>0</td>\n", |
|
|
439 |
" <td>0</td>\n", |
|
|
440 |
" <td>0</td>\n", |
|
|
441 |
" <td>0</td>\n", |
|
|
442 |
" </tr>\n", |
|
|
443 |
" <tr>\n", |
|
|
444 |
" <th>ID_0000aee4b.dcm</th>\n", |
|
|
445 |
" <td>0</td>\n", |
|
|
446 |
" <td>0</td>\n", |
|
|
447 |
" <td>0</td>\n", |
|
|
448 |
" <td>0</td>\n", |
|
|
449 |
" <td>0</td>\n", |
|
|
450 |
" <td>0</td>\n", |
|
|
451 |
" </tr>\n", |
|
|
452 |
" </tbody>\n", |
|
|
453 |
"</table>\n", |
|
|
454 |
"</div>" |
|
|
455 |
], |
|
|
456 |
"text/plain": [ |
|
|
457 |
"sub_type any epidural intraparenchymal intraventricular \\\n", |
|
|
458 |
"file_name \n", |
|
|
459 |
"ID_000039fa0.dcm 0 0 0 0 \n", |
|
|
460 |
"ID_00005679d.dcm 0 0 0 0 \n", |
|
|
461 |
"ID_00008ce3c.dcm 0 0 0 0 \n", |
|
|
462 |
"ID_0000950d7.dcm 0 0 0 0 \n", |
|
|
463 |
"ID_0000aee4b.dcm 0 0 0 0 \n", |
|
|
464 |
"\n", |
|
|
465 |
"sub_type subarachnoid subdural \n", |
|
|
466 |
"file_name \n", |
|
|
467 |
"ID_000039fa0.dcm 0 0 \n", |
|
|
468 |
"ID_00005679d.dcm 0 0 \n", |
|
|
469 |
"ID_00008ce3c.dcm 0 0 \n", |
|
|
470 |
"ID_0000950d7.dcm 0 0 \n", |
|
|
471 |
"ID_0000aee4b.dcm 0 0 " |
|
|
472 |
] |
|
|
473 |
}, |
|
|
474 |
"execution_count": 8, |
|
|
475 |
"metadata": {}, |
|
|
476 |
"output_type": "execute_result" |
|
|
477 |
} |
|
|
478 |
], |
|
|
479 |
"source": [ |
|
|
480 |
"train_final_df = pd.pivot_table(train_df.drop(columns='ID'), index=\"file_name\", \\\n", |
|
|
481 |
" columns=\"sub_type\", values=\"Label\")\n", |
|
|
482 |
"train_final_df.head()" |
|
|
483 |
] |
|
|
484 |
}, |
|
|
485 |
{ |
|
|
486 |
"cell_type": "code", |
|
|
487 |
"execution_count": 9, |
|
|
488 |
"metadata": {}, |
|
|
489 |
"outputs": [ |
|
|
490 |
{ |
|
|
491 |
"data": { |
|
|
492 |
"text/plain": [ |
|
|
493 |
"(674258, 6)" |
|
|
494 |
] |
|
|
495 |
}, |
|
|
496 |
"execution_count": 9, |
|
|
497 |
"metadata": {}, |
|
|
498 |
"output_type": "execute_result" |
|
|
499 |
} |
|
|
500 |
], |
|
|
501 |
"source": [ |
|
|
502 |
"train_final_df.shape" |
|
|
503 |
] |
|
|
504 |
}, |
|
|
505 |
{ |
|
|
506 |
"cell_type": "code", |
|
|
507 |
"execution_count": 10, |
|
|
508 |
"metadata": {}, |
|
|
509 |
"outputs": [], |
|
|
510 |
"source": [ |
|
|
511 |
"# Invalid image ID_6431af929.dcm\n", |
|
|
512 |
"train_final_df.drop('ID_6431af929.dcm', inplace=True)" |
|
|
513 |
] |
|
|
514 |
}, |
|
|
515 |
{ |
|
|
516 |
"cell_type": "code", |
|
|
517 |
"execution_count": 11, |
|
|
518 |
"metadata": {}, |
|
|
519 |
"outputs": [ |
|
|
520 |
{ |
|
|
521 |
"name": "stdout", |
|
|
522 |
"output_type": "stream", |
|
|
523 |
"text": [ |
|
|
524 |
"Collecting efficientnet\n", |
|
|
525 |
" Downloading https://files.pythonhosted.org/packages/97/82/f3ae07316f0461417dc54affab6e86ab188a5a22f33176d35271628b96e0/efficientnet-1.0.0-py3-none-any.whl\n", |
|
|
526 |
"Requirement already satisfied: keras-applications<=1.0.8,>=1.0.7 in /opt/conda/lib/python3.6/site-packages (from efficientnet) (1.0.8)\n", |
|
|
527 |
"Requirement already satisfied: scikit-image in /opt/conda/lib/python3.6/site-packages (from efficientnet) (0.16.1)\n", |
|
|
528 |
"Requirement already satisfied: h5py in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (2.9.0)\n", |
|
|
529 |
"Requirement already satisfied: numpy>=1.9.1 in /opt/conda/lib/python3.6/site-packages (from keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.16.4)\n", |
|
|
530 |
"Requirement already satisfied: pillow>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (5.4.1)\n", |
|
|
531 |
"Requirement already satisfied: imageio>=2.3.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.6.0)\n", |
|
|
532 |
"Requirement already satisfied: PyWavelets>=0.4.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.0.3)\n", |
|
|
533 |
"Requirement already satisfied: scipy>=0.19.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (1.2.1)\n", |
|
|
534 |
"Requirement already satisfied: networkx>=2.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (2.4)\n", |
|
|
535 |
"Requirement already satisfied: matplotlib!=3.0.0,>=2.0.0 in /opt/conda/lib/python3.6/site-packages (from scikit-image->efficientnet) (3.0.3)\n", |
|
|
536 |
"Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from h5py->keras-applications<=1.0.8,>=1.0.7->efficientnet) (1.12.0)\n", |
|
|
537 |
"Requirement already satisfied: decorator>=4.3.0 in /opt/conda/lib/python3.6/site-packages (from networkx>=2.0->scikit-image->efficientnet) (4.4.0)\n", |
|
|
538 |
"Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (0.10.0)\n", |
|
|
539 |
"Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (1.1.0)\n", |
|
|
540 |
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.4.2)\n", |
|
|
541 |
"Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/lib/python3.6/site-packages (from matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (2.8.0)\n", |
|
|
542 |
"Requirement already satisfied: setuptools in /opt/conda/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib!=3.0.0,>=2.0.0->scikit-image->efficientnet) (41.4.0)\n", |
|
|
543 |
"Installing collected packages: efficientnet\n", |
|
|
544 |
"Successfully installed efficientnet-1.0.0\n", |
|
|
545 |
"Collecting iterative-stratification\n", |
|
|
546 |
" Downloading https://files.pythonhosted.org/packages/9d/79/9ba64c8c07b07b8b45d80725b2ebd7b7884701c1da34f70d4749f7b45f9a/iterative_stratification-0.1.6-py3-none-any.whl\n", |
|
|
547 |
"Requirement already satisfied: scipy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.2.1)\n", |
|
|
548 |
"Requirement already satisfied: numpy in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (1.16.4)\n", |
|
|
549 |
"Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.6/site-packages (from iterative-stratification) (0.21.3)\n", |
|
|
550 |
"Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.6/site-packages (from scikit-learn->iterative-stratification) (0.13.2)\n", |
|
|
551 |
"Installing collected packages: iterative-stratification\n", |
|
|
552 |
"Successfully installed iterative-stratification-0.1.6\n" |
|
|
553 |
] |
|
|
554 |
} |
|
|
555 |
], |
|
|
556 |
"source": [ |
|
|
557 |
"# Install Efficient Net as it is not part of Keras\n", |
|
|
558 |
"!pip install efficientnet\n", |
|
|
559 |
"!pip install iterative-stratification" |
|
|
560 |
] |
|
|
561 |
}, |
|
|
562 |
{ |
|
|
563 |
"cell_type": "code", |
|
|
564 |
"execution_count": 13, |
|
|
565 |
"metadata": {}, |
|
|
566 |
"outputs": [], |
|
|
567 |
"source": [ |
|
|
568 |
"import efficientnet.keras as efn \n", |
|
|
569 |
"from iterstrat.ml_stratifiers import MultilabelStratifiedShuffleSplit" |
|
|
570 |
] |
|
|
571 |
}, |
|
|
572 |
{ |
|
|
573 |
"cell_type": "code", |
|
|
574 |
"execution_count": 14, |
|
|
575 |
"metadata": {}, |
|
|
576 |
"outputs": [], |
|
|
577 |
"source": [ |
|
|
578 |
"from IPython.display import HTML\n", |
|
|
579 |
"\n", |
|
|
580 |
"def create_download_link(title = \"Download CSV file\", filename = \"data.csv\"): \n", |
|
|
581 |
" \"\"\"\n", |
|
|
582 |
" Helper function to generate download link to files in kaggle kernel \n", |
|
|
583 |
" \"\"\"\n", |
|
|
584 |
" html = '<a href={filename}>{title}</a>'\n", |
|
|
585 |
" html = html.format(title=title,filename=filename)\n", |
|
|
586 |
" return HTML(html)" |
|
|
587 |
] |
|
|
588 |
}, |
|
|
589 |
{ |
|
|
590 |
"cell_type": "code", |
|
|
591 |
"execution_count": 15, |
|
|
592 |
"metadata": {}, |
|
|
593 |
"outputs": [], |
|
|
594 |
"source": [ |
|
|
595 |
"def get_corrected_bsb_window(dcm, window_center, window_width):\n", |
|
|
596 |
" #------ Correct Dicom Image ------------#\n", |
|
|
597 |
" if (dcm.BitsStored == 12) and (dcm.PixelRepresentation == 0) and (int(dcm.RescaleIntercept) > -100):\n", |
|
|
598 |
" x = dcm.pixel_array + 1000\n", |
|
|
599 |
" px_mode = 4096\n", |
|
|
600 |
" x[x>=px_mode] = x[x>=px_mode] - px_mode\n", |
|
|
601 |
" dcm.PixelData = x.tobytes()\n", |
|
|
602 |
" dcm.RescaleIntercept = -1000\n", |
|
|
603 |
" \n", |
|
|
604 |
" #------ Windowing ----------------------#\n", |
|
|
605 |
" img = dcm.pixel_array * dcm.RescaleSlope + dcm.RescaleIntercept\n", |
|
|
606 |
" img_min = window_center - window_width // 2\n", |
|
|
607 |
" img_max = window_center + window_width // 2\n", |
|
|
608 |
" img = np.clip(img, img_min, img_max)\n", |
|
|
609 |
" return img\n", |
|
|
610 |
"\n", |
|
|
611 |
"def get_rgb_image(img):\n", |
|
|
612 |
" brain_img = get_corrected_bsb_window(img, 40, 80)\n", |
|
|
613 |
" subdural_img = get_corrected_bsb_window(img, 80, 200)\n", |
|
|
614 |
" soft_img = get_corrected_bsb_window(img, 40, 380)\n", |
|
|
615 |
" \n", |
|
|
616 |
" brain_img = (brain_img - 0) / 80\n", |
|
|
617 |
" subdural_img = (subdural_img - (-20)) / 200\n", |
|
|
618 |
" soft_img = (soft_img - (-150)) / 380\n", |
|
|
619 |
" bsb_img = np.array([brain_img, subdural_img, soft_img]).transpose(1,2,0)\n", |
|
|
620 |
" \n", |
|
|
621 |
" return bsb_img\n", |
|
|
622 |
"\n", |
|
|
623 |
"def _read(path, desired_size=(WIDTH, HEIGHT)):\n", |
|
|
624 |
"\n", |
|
|
625 |
" dcm = pydicom.dcmread(path)\n", |
|
|
626 |
" \n", |
|
|
627 |
" try:\n", |
|
|
628 |
" img = get_rgb_image(dcm)\n", |
|
|
629 |
" except:\n", |
|
|
630 |
" img = np.zeros(desired_size)\n", |
|
|
631 |
" \n", |
|
|
632 |
" \n", |
|
|
633 |
" img = cv2.resize(img, desired_size[:2], interpolation=cv2.INTER_LINEAR)\n", |
|
|
634 |
" \n", |
|
|
635 |
" return img" |
|
|
636 |
] |
|
|
637 |
}, |
|
|
638 |
{ |
|
|
639 |
"cell_type": "code", |
|
|
640 |
"execution_count": 16, |
|
|
641 |
"metadata": {}, |
|
|
642 |
"outputs": [ |
|
|
643 |
{ |
|
|
644 |
"data": { |
|
|
645 |
"text/plain": [ |
|
|
646 |
"(128, 128, 3)" |
|
|
647 |
] |
|
|
648 |
}, |
|
|
649 |
"execution_count": 16, |
|
|
650 |
"metadata": {}, |
|
|
651 |
"output_type": "execute_result" |
|
|
652 |
} |
|
|
653 |
], |
|
|
654 |
"source": [ |
|
|
655 |
"_read(path_train_img + 'ID_ffff922b9.dcm', (128, 128)).shape" |
|
|
656 |
] |
|
|
657 |
}, |
|
|
658 |
{ |
|
|
659 |
"cell_type": "code", |
|
|
660 |
"execution_count": 17, |
|
|
661 |
"metadata": {}, |
|
|
662 |
"outputs": [ |
|
|
663 |
{ |
|
|
664 |
"data": { |
|
|
665 |
"text/plain": [ |
|
|
666 |
"<matplotlib.image.AxesImage at 0x7f6514ccc898>" |
|
|
667 |
] |
|
|
668 |
}, |
|
|
669 |
"execution_count": 17, |
|
|
670 |
"metadata": {}, |
|
|
671 |
"output_type": "execute_result" |
|
|
672 |
}, |
|
|
673 |
{ |
|
|
674 |
"data": { |
|
|
675 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeYFtX1xz/z1u0N2F1YelFEmqKoKIKiokbF3hW7qZoYk2hiQWMsSYyJmvgLUaNGY429K1LEggIKgkjvy7K9t7fM749z7ry7sNQFpNzv8/DMu/PembkzvHPvud9zzvc4rutiYWFhYeD7vjtgYWGxe8EOChYWFq1gBwULC4tWsIOChYVFK9hBwcLCohXsoGBhYdEKdlCwsLBohZ02KDiOc6LjOAsdx1niOM5NO+s6FhYWOxbOzghechzHDywCjgfWAF8CF7iu++0Ov5iFhcUORWAnnXc4sMR13WUAjuM8B4wD2hwUHMexYZV7EdLSOwGw/37dmfv1NwBEYs3fZ5csBKWu63baUqOdNSgUAKtb/L0GOKxlA8dxrgGu2UnXt/heID+nYYeeDcCUSf+gILsHAIWVq763Xll4WLk1jXbWoOC0sa+VNeC67kRgIlhLYW/BqIGDABg9sicAjuMwasRYAAo/tYPCnoKdNSisAbq1+LsrULiTrmWxm2DqvK9abQGmfvre99Udi+3EzvI+fAn0cxynl+M4IeB84PWddC0LC4sdiJ1iKbiuG3Uc56fAe4AfeNx13fk741oWFhY7FjvFJbnNnbCcgoXFrsAs13UP2VIjG9FoYWHRCnZQsLCwaAU7KFhYWLSCHRQsLCxawQ4KFhYWrWAHBQsLi1awg4KFhUUr2EHBwsKiFeygYGFh0Qp2ULCwsGiFnZUlabEvwtdPtvF1uqML/zxvPAApyfJT+8lLn/KTg7IAuOfjp7SdjXLfnWAtBQsLi1awloJFO5FDOPVY+ZiWCUCfDikAfPvtQ1z7/NMAfHT1lQBU19Xw01Eny+dwVwD+/uH9QOMu7LPF5mCzJC22Gj06HMSK/94LwG//+gkA97zzIQnlvf1l00H0dZ4eux8X//dmAAZ0vxSAUwb04JvyBgDe/M3RAPjPOm0X9N4CmyVpYWGxPbCWgsUW8flt/wTgsPOHQEGG7EzuINuP5/K7+z8G4O6379EjRKJzYPcLmLdujeyKzNXv6nDfexkA97sSAHzXjwfiO/MWLATWUrCwsNh2WEvBog34AVj+x8cA6BmJye7Du8Gxo7VNsEV7qenw6t9eAOD9l14C4JHpryGavXDeERcA8Pxn9wPikqz/4FkAUo4fu4X+hHXbtI33YbEBrKVgYWGx7bCWwj6NTKBWP4cAuPig0/jPbRfLLsMfHKpBSa4DjdXyObmXHtfSYtg+TJkyh2OOGbqZFjkAfPfoIwD0v+q8dlwtCYCnL5nAxf9VgfHYp+043x6FrbIUbJzCvgLfYYTT+gDQVK0vNiH8WfLi/+4oqeR0crdMmudIRGIoO1maVVXKNrM/JOfv8K6NHj0EMzlNuPKHANzx+D+973t0lriG/ft11D1JbG9cQ1rqfgCM6pLOvb+VaMsePX4HwI9+MZHKmmXa0rwaptLhvrN0scsHCwuLVrDLh70evXWbBtTr5yTd+snrJiU+F4wfBkB2biqkK7Hn0+p/HSVCkVF9IbVfu3ozZcoXjB49fIvtRo8eDUBebTqfr5WlzcoHLgHAueA+4PN29WPVnG/pNvgA+aNJllBO6kkQM+VJTOVD88z2iohLSzRaWFhsO6ylsNeih24NBxAlQQqm69YBv+QrPHTGYAAu378TQbUQllbL7JjbMRWAcEqQtP21kvmIIbLN7rLxpQuluPGUSbMZfckZANR/LsFLqUck+IOtheOYWXsUALePO5YuuXIv1/7rt9t0rtYwz0Y5ExqB/vp5kW73qqCqrbIUtntQcBynG/AU8mTjwETXdf/mOE4O8DzQE1gBnOu6bsUWzmUHhR2GProdrFvz6KtIpCibwcFBlhXQp5+Y0jcP68KcMjGZ//1dKQC162ukeSQGbrkeO1u3ZUz+v4kAjL726tZdaS6DuJrdi6S+cN+TH2bJmie36Y4Sg4LkVLjuqhbf+fXT9ry86kEJ6rOKvLYd59ijsNOXD1Hgl67rHgAcDvzEcZwBwE3AJNd1+wGT9G8LC4s9BNvtknRddx2wTj/XOI6zACgAxgGjtdmTwBTgN+3qpcVW4Zojf8m/F4llECkp0r2lLVokCEaBC36JATi5p0QZhn0+ShujAJzQTZYWFx4jZOXIbplkhOTYN5eOAeC6KcsZ+6vJADR1KZDT7qd5EQXdIE335Utm5OwHztqme5pw2bXe58nvPpL4oq5KP2yrhZCq22RguXyMLN/Gc+zd2CFxCo7j9AQOAmYAeTpg4LruOsdxcjdxzDXANTvi+hYWFjsO7SYaHcdJA6YCf3Bd92XHcSpd181q8X2F67rZWziH5RS2C+Kqq7ztIQDunLGaB2fIejtauVDbaN4CARKzqpkLgsiMCRNOEddkfkqQ9Q0RAK4ZkAdAcpK0P/fthYzrKf+VN05aAkBDeSn3nX4oAFXNcq27zhkEgBN3ueixLwFIUfLyvosPIufa89t533DTcaLTcN8kE+S0WdrKQrBziUYAx3GCwJvAe67r/kX3LQRGq5XQGZjiuu7+WziPHRS2GVmU3nQ3AHfMWgvAQx98AazX780AENFtmITvPaRbHyQLMXn6UDHzp66rIa6/id8MFc/ClEKJgHx/1lqIm0FG/fdOCpceLed4Y6Ww+PtlSJzDH4/uxaiHX9b2Jq5gIK5rwopNolP7sfTjGfQ9+vAddr69FDuXaHSEEn4MWGAGBMXrwHj9PB7Y6yldC4u9Ce1xSR4FfAx8Q2Ja+i3CK7wAdAdWAee4rufH2tS5rKWw1RDzfe7PbueGz0QG7cOZM/S7ahL/FWa8N0uFEAmSTV2SgUzOHC7xDJXNQi7GXLh+oCwb1tZJSvQNH68AILK+FjKVrAzI+Tukh7miv8Qu3D9D+hOvMKZ8CWDyFSbrNsZtp94IwH8Xy89i8YK/4pGfZWWy7dBhi0+iFZbNgk+kn86l5+hO+7PaADs3Icp13ekk7NENMWZ7z2thYfH9wmZJ7jGQIKMvfnwbABe+v4R5C7/Q7xp0GyIRmJS2wXdJeP/djqZEpyczt1y4gVUavTioYyr/WSxuzDeXyEwe8cvYH+ySTm6K8BH5KXKd2UW1zCiW3IGgK3xDE9/oNVOQcBbzGeBQ7nzjfgDy8tQ9WTyf6tniQs08SQRXRo2S6MUpU6Z4T8AEMSVnnsg7158p7e64Qr7s3Y/aaZLhmJon++rWP4bFtsPmPlhYWLSCtRT2ECz5hYiiXvzRUgDmLZxNInOv5dhuGP0S3Zp1dQBjPQRyJfchWtnI4BxxSa5QSyESc6lqkhm/i/IHPdLFOshLDpKiXMLbK8TT4FbU84V6JJoqTYZhjm4rgbX62QROzUBCWuCGQyXMOPbeYjIvfUC/l3yEqVOnAuA4R9G3U1GrczRUNTPmbyIxf8dc0X743V9PIe1QCYN+aqxoJnxZcisA977zeyy2HjYhag/A/531e5Yq6fend9/XvfUkKB3jJkxm4/RoTWAKZkJUTHmng0QqupE4qWnywteV1AEwblgBecmyNMjVUm/ZIdlOXVfDx0WSB1GxWpOIgn5orNNrGZLTxEisJiFOYvqYzle/lwFg6C0SrzB6/x8zdZGUkFv22iQAep12lPTV6QII+Xj7TRIY27AI/vjyn/R8AwDo2204i285AYA/viPX/6JY+hVrquXVWf/AwqZOW1hYbAfs8mE3RkG2mNl9spP54SuGVDRSak0kUqCbdRslkddg2qk3OJIJjuQwFGTJkuGQTqletaYVGo3YOyPMyho5n8mBKG+S7fS1VSQH5fypubIUqVtXSsJi0RoP3pIlHzDyZhK/dtUxZzJUcyquP06Cr6YuKiaYJNWiep1mApBMgFUWxlJ49rEPAFhY/Dl/dO7T7+cBsGR1HWm/FUulUQ2WWJ0sif78gwG8OguLrYS1FCwsLFrBWgq7MT69+ioABj8xC+JGQLSli1F1DrygpGY2zm8waScdIV0si0M6Sfs4sFS1EgJ+mR+CjsP+SjC+vkqCkOZr+DJxl3q1FGJVS/S8Poy78YIREp5yzSAhC4/55/Mc3Pc4AG44TEjF11dU4Fz2xAb3As3f/p9+SqEl7rnjV9x8u4i5LioxGg5BCOnSuHmm7iulrswESGnAVFgEUx5fWIL79P8AcC6+UtsYYRWLDWGJxt0Qx+wn6sXfRiXacP2yBYheDSSWDDE21g10AI1B8JYRmqSa1YkT95OXpVKXCourGqnSJUJ+qpjrl/TryBolNf/zhSgo0WjIwigJwtBIw2eAIwPQ4P5S+OX+I6XfLi6PqVDL2ytlgAn5fQzUqtQhXXVce2AeZz14qp6up55XlaRxcZzWBu2UVz+k9PWvALjh7a8BWFVUAXynLUx7GZwuOfoo/jpSztusA1bn809nH4QlGi0sLLYddvmwG+LcISMAuG2W8fFXkog/MDO1S8LtKNbBsIHDGaYE4MSPvmnV/uYjelAfk6WFyXpMDfgpi4pVUFgj1sCLy8tZUakWiAlG9DItC8lJ7wtAeY0hN98GV6ySXunXAfCtnuv65z/x7imvQLIwj+6ewc91th5xiRCpjDiKxE8xRms4iZoQEyRWw83M5qzHJH/irFrNCp3+NW+9LKTjTzSWY+VSKXz7n2kfk6niMA+ddSAWm4e1FCwsLFrBcgq7EYwLcm2FzHSk/EC29V/ROjIRZM0thOHwIXLcid0yKVQ+4NGpsr4eOVjW99PuPZGF00R27Af/k8jDovpm6tap61KJRn9mErF6sQwyO8j5D1VicnlhOXefK3UfzvtrWyrKJg/O8A0dSc0Q9+NFh/QEYH1DhFfGScCRc85AadZ7MAkXZDvwiBSsnfGNREAe+ZQIvMTqpoEjFoL77g0A3P3aDH73j9vbf809CztfZGVHwQ4KgtuOl4i9Oz98R3a4mfpNMQmvgkkpTuaKY8SnX63E4ceFNawvEu3CUXliLk9Z/lTiAjMkdHjUj0Xi4uNVVTg62MQ11uDE3tmUKPmYE5YBqFiVmL5+4mycQ47eZP9TMyRluS4qS52j+3dibZUsRUzM49AOKYztKvf18xO0sEz/TrBKvQFnqHR8Wt9NXqcl3NmfAVBWXM0t94j34eUFEvpc3ST31lQ9HxNl2TtvHABLZ/8ap2Bz9Sv3Slii0cLCYtthicbdBj7u/OBBAPJ6inDV+hVf6XchEi46kb8cPWwAGSZmIC4zouvAr08V0/y+53+3wfkjUC0E4P+pe66oPsJkJR2/1loPcReSdSnxwZcrAEjPFPLSOWRcmz0/+WhJVZ705WIA0pIkMWnaN6sgYtym4oZ8tyyVXM2tIKKkYmYSHN5dPoeVUC3XOIiczVsMzsFHABCY+ByzKuRaJTVKjDaaOI4IhpRdtl6iIn9yYXe66nJtTcVXWCRgLQULC4tWsJzCboLeXU5hWeGb8kfoNNk2myhGP6JuBz8/QVSXh3VM9dKYvywRYq9zSojrXrql7QtESqBSCLhPbpXZsmd6mNGvyDWWrJJUayc9Fbd8nh60eoOTrGfU0IsAmPr1M9I+3IuPHhFX4TFXGJVmY9WMhWyxbA5VHmFQxxTuHyH3knWsVrNKDYHyF1MnSo7H/FKxXH49aQm1X4mwjNNL8yLixYw7XoKPXn3/Fb1WGfz9PQDu+UCsjN++ZqIdC/FqPHh9G8CDZws/ct1Lt7bxwPZKWE7BwsJi22E5hd0EywrnAcqGNy/WvSZUOY9LR0mp+OG54h5sjLpefYaj8iX0+QcPJaopbYRgJyLPiRbDIQMk9PmAP09h+WqpExHMluCiSEMjMHODg2W2d123RV1HwTVDR7awEAw0p6FDNslqARzdRfqYnxIiLUk4hebPxRJ5fM46TuwlwiwnvLYAgAM1FPqSoV1w+kkOCPFi7wqvffDqBpesB+UqbjpE7uW2D6VIbLQumuiTZlxCBa+uMAKzRrrOuFL3bdhBYbfBCkDj/9GcAxOb4MvyIvI+WCPE4JiCDIZoHEH/o3pKu1ST9wC8okuRM07xdgV/KsuSy8bcAcDy1fMYPkSIuu8q5KXJzEiidKXReZRBx3XlRRqQ13ujXv9zxlMb7fNQU8tx/SROoi4qLtWZJXW88J0sVQy5uaCygc/WywvZHBXy8Sc6cF15Qj9K6yX24qXPP9roEq/9TWITxl13Aqs0ceuH78pgcNux4vL8w1draVpjwjPNtsZTmHr8fIm5uOK59lSw3ntglw8WFhatYC2F3QY5JIg9k1eguQ3hVBZqPsI5vcXMzg77WVsnM/nBLTL+VjwpKcJT50gAz/gzWlyiWmbG9+ZL5mJen4P5Yp6Qj/36SQblIZ1SeatCzldd/TYAt54ilsWC4m0sxNq8kK9KRQ4uqGXjZhTXsbpWXKNL1UV6z/BuTNHIyqGau3HegZrd2T2T0UpSvtTGJU6/YQIA7uVDmbpE7uudL4QofSes1Qv9AcjSQreVxk1Zx6z5IgBznkZWXkE3NiZX9z1YS8HCwqIV2m0pOI7jR5ipta7rnuI4Ti/gOWTqmw1c4rpu8+bOYQFwBGCES1oWgIXLDutBnwyxGubp2r+0McpND1/c+hRNpQz4uYQw1xc/woa47pw/A3DvGJFG++GkJTx4huQEmOKwt77+AYZ469PrUgD+9rHmYnA4+DXMOvbWVtxTEdWNYs10UMJxZH46a5Uj8Kk7PC3oo0Il3x5SLQYModkYpa+pSuXNYS3Kz8eFP2h89VvunCFycL4cycKMlxvLpiPUyzHJeXK/DeunQ1yskzs/E7J19YRb6TbBFkLfEcuH64EFJNQ97gMecF33Ocdx/g+4Etj4F2rRCr7UFOJ15r9D1Yd8StJF4t5Le9X+Yo5/Xd8MXQ3xp+TZupXUV0zUfUmtv3vuTX6s5eAWa+Rfw91jueoZESl5bLL4+HF6UNCnMwArSiVjISVFz1WdBzGjWGTyBmLAOv1sUqxF8SgzfyApqgQ9V7Ug562v8ZYSl2sK9b1fFVKh9+fXwaBMcybS0sPMLzeeA+P58LNhinXy5Q9w6ciRACxZIcuIQQdKHsU3C1ZCXO+52eST9EKqGsLDWqn75sO60SlDyNiS6tfZV9Gu5YPjOF2BHwCP6t8OcCyJ5d+TwD4pcWNhsaeivZbCX4Ffk9AI6wBUuq5r/D5rgIJ2XmMvh+ol1hWRiEsQUze1o8xqnVOC9EqXnIAHlRic+NHdiVNUiglNz4PYaJx/VIjHz2cX0jNHLJBTtcT8yPs/ZvpcmSUL+ki04Npl61m7RJYxpx4+GID3l6k/PyMzIRLtUx3EeAwwFotYCocOFlfgl/PWQYGQfTO1rkSsqBSQ8y3sJt/NnreMC0aKWf/QfBFNqVcX5ivdMpkw1SyrTOBrdxLydIr4VzTFpFYEMXF1/kTJyiuuGEbaHR8C0FxhYh2SvGdVVz4XgBcX7MfKW6UcXcqvrKWwzXAc5xSg2HXdluLZbRWcbTOE2XGcaxzHmek4zoaRMhYWFt8j2mMpHAmc5jjOyciwm4FYDlmO4wTUWuiKBJ5vBNd1JwITYV/PfRih29V4XIIjuQEn9RNSLxJ3vSKuT75xk3fkl7+RqkeH3nGJ7mnGiJW4j4uF8MDbYkX8+JAC5muAUOdrJV8gLz+dM0fIrP6qztC4ZZw0XMLjzfq+SV2IBP2kdxceoEbFXCgrA0czG/2yNfzA8EFd6GwK0So/sTo5jXBA2r39lfw0evTpRpYGZ43IE6PzHa1A9eTnqzmopzyHaeX76X2mkiiLZ5QaHF75ZoX2Q6wvE+kZ7NOB60b0BODP75o6FNkkVLAlOOu6977lqlOED+nSQQrcFpZNZV/DdlsKruve7LpuV9d1ewLnAx+5rnsRMBk4W5uNB15rdy8tLCx2GXZG8NJvgOccx7kL+Aqw9cDbhAklNsE0HTHirP1VKt0oH62oaWZZmc6I6cqeN5Vy6H0/AiCti7jRfE1Rpl0sGgGvLpPKUBOOFz2CCR8s4Y43Rcz1tCMkO3F4p1QemCMcRbxKi7gmFxBVV+Hn68Sy6KNr/6ywn1lzTRUoo5MQxp8jLsyT1bKZWybeglsO6sI0rT3ZoBzB6sXzCBWIS/SK/uJJubJ/J4Yd1k3vT57B6WpFBH0OH601RIZxRZZj8jESloJL06w/APDjn/8HgA/WiAqVf/Iy/nTuIAAe/EQsheaaQhI1McQiaqhczDcz5f7m3ynPNPsn+56lsEMGBdd1pwBT9PMyYPiOOO9eDb+QeMQMDZNEh25C2Bmfvdm+M78It/bR1seHO/KH8VI6LTlJk4565fDpOnkJbx8lxVeG/eNzAGYvLeKZiw4FoEbFTW74aCn1paV6QjWlw0G+VFLQ5FuUqzxbVXMUr2BsWExzJzWZgwvEGz25UK59mCZtnXpEd049/mAAZjw5BYD3v3ybe0dIIdj5GnOxoKKRYVp3AnU/pmkUIxlhxiyUPv7HM/dXAAfoZ1W8Dh4MfWSw+8cbEwB49pJ7AaiOxLy4h+fPEjflGU+Uk3DbGldqDePfF1Jz9jGa1u2paJvaF3s/bESjhYVFK9jch+8LYTGhqdeMyJQ8Tu8r5rexEF5aKgTYHSfuT2LGSuCWZ2YAMP4oOdcl/Tqyf5bMfhl3i4hpLCZWwYrrR3PPVxJk9M8vdQlQ30zCDarEXWUjlZVCeFaaykxpOqPWNECWuiIrxTR3fT7mank5xy/nyvFpKvI150G5nPewCVdL+wlXw9siTFs6bQUAa+qaeeV1SZnur/0/YIgEUNEcI+Az1pRKttEMYfF0jzzwFwBM06VDS1xwuRCmrz41mzVKpJ4+Wiyoq1dW8K/JovaMT5YxxCPMWyv39dl7QtCeeMB5ALy7YDPZoHsZrKVgYWHRCtZS+L4QN+kgMiv3KMgipDNify0Vf3SBrKuvufL4jQ6veH8G44YLiejT9fKrKyp4+EMJxCnoJTPpHcOFwDvqhTmsWa1BTh5JmEZiPa0uSVIT+wK6hlcXY7hzJk1FRphE8woavqYpUScWgBdVx8Rx7meB1mLo/0MRYln/xJtMniRZjIaDWFffTMgn89NvD1ILwbg84y7dlG/I7S1BV8XL1kKTWCDTJt+jVzUyay2wXMjWSNz1MjILioQ8vWtED/41TWtPxlRcxcknEpHrTlNu5uzBYoW9u2Dj0++tsIPC94VGfbn8woAXpIU8IZKMkLD/52qadH63zI0Of+7RDxmq6kSPapr02tVzIVUGihot6HLV66rz2FBJwjBsWa26Sj8bNn8toJ6AqAamahRJJBoG15Sy+3qrbvO5TyX9uvyZSQC8vjrA2D5yX01axi7Z7+MdrfvQN1OWSQdrjke0qpEyXU7F4yacJQ3QJK14y8HAfC+D5Ce6TDpjYB53T5dlWkBXIof3zIZkjQsxpefcGATlurVKxsbi+14IjV0+WFhYtIK1FL4X9MToAe7XWyLo8pMD9FQfvSkFf990MdG7df+QU/8s7b5+WHLNphfV8NyXMvvFG9WtmNIX6mTmr64zrkaxMoYP6c9s9dtHy0yMRAiczMRnkPJxKolmSsmldBaXY31DlLYIz83hjv/8Rz+JxmR+n+FeLPyzS2Sd4bjQpOnUp/cUy6lIoy9jTVHMZF1fa5ZcdRiCdN5HUvlp4JldYMVs+bqnXOvRhbLEOLJfR4+8/ULdrc8uLef8oRIP8tx0k/kZoUCtr9SA1tTYDdTOdzWspWBhYdEK1lL4PhA6GGIyEw3NEzLv24pGTzNh0mKZQUf0lfXtaQ99SurTsob/2cFCtv3347ngF/fdyIMlWu/j2UuBer2I4Qrkv/iLuavI7y16CkVVsqZ3wkEO7Cmfv6sUtjBaH4EKIehGDJRgKqOFQHUjwQ6yL7LVOQGaJJshWZBFJXWU5InL8pfqdqyPxvnb+0KCmsAqdIZe3xBhhZa2D2mQVj0uhgP52z0vA/CvM49h0h+mADDmX2IpvLNKnsEXy8o9fuafCyRLMjPkZ1CO8BGvZ8i56qtrqFIr7bQemt1ZaiIm9x3YQeH7gBOCmPzYFqjgiQNM0h/xJfqyHNRRTFkf8PlKISbvfUcGh/OPGsygDvKj/t1rRuU4jpdUxYG61ZcsEKTISJpranEovzPzdEmRqfEBVa6LkyMvkBmkjDnZrUcWeSqjviB+IQB1FdNJyKcbr4a80JkdTqCqWo4eoS/lp8sqyFThleXqEeiWFsKQn9PVO3CAemAK6yN00MEgU69dSSrmp/voTIk1+Bcw5urWxW97Z8hS55Xl5VyiGpQmJTsSdxmoqeSnDJaB64XpM0lPlyWF8VYcvV9H9jXY5YOFhUUrWEthl0LIQpqqwJFHP0SJrReXlTOokywluqcJ6VemOQczl5USrZakoAmnSC5BdjjA9a8Zt6ApYtIDp5MQda4Sa2lKXtZWNEC9uiKThDgc1imV1cnSj9W6RPD7fRyieQdpQZkzDtF+pQX9RJT1M5GTwztd7S09nl0qy46ze0kfgj7HK2tvZugzB+by6Xrpx2glMMubopif4jO6dDpSlxhzy+sJahzGmkpjkeSQKAMnJOF/fv0Il/zxR7TEp+/9EoAjxt7P+RoteoW6Ot9cVcmXmo5e0WSI1Q74lGQt1kI7KUE/+xqspWBhYdEK1lLYhXA6iaCKW1rMgQf0BBIyZccVZPCd1nYo0Ai+H7/0MQDp2Xk8fJ4kntZFZMb913clEJWgpREHigxZSTRGJ113r2+QGdoQd7VAfi8hKTPCMvv1SAsxS6/fNVvW8NcOyDUcH6WqxHyCWg5fl9V75391ufATqQGfpzCdqgVvf6jVnQ55fi6/HyHis0Ykpmd6mFK1HkxOQyTmEsgXEnSpRiGOXaip3LhkdpVZPlZioi4rSeRsCDF46Z/e5ZLbpfitVykrV/iBQTkpTNXoScMzFNY3s0ZdnH6TWxFzWFskFtlhWn+icP2+V0rOWgoWFhatYC2FXQKRMLvsQJkNR+T1YXKhzEirdLaaW17PLweL1+HHr0puQCed6U7rQZjGAAAgAElEQVQ5INeTOTcaBPPmz6ZqoejXZDgy8/7oR896gT491UIwlkhtZhIBv8yIi1bIbLyoqIaj1SvwC5Vbn1FcS5Gupw/X2dKIvQzPTeWYPjJr91Te409zivhU61senC/t52iNyON65lCtHox8tTBSAz6PRzH7ihoinKMCLR+uEAugtExm9r+c2J8svf7lzxplvxwS+gY6r4WD5Bb8GIDiyqdpib4ZYZ7TjNOJR0uW5AV9OnCLhkEvWmTEXGOMOECsqTnlcg+9O6ayr8EOCrsAF44cD8A1BwjJ9VFhNTF9eRdpfQM3GudhTe99/nypqTBXX679spL4laYZF6+RKMZHb7+GjP2EuLz9jDsBGQCy9QXqqG48Y+73y0zi3UUmylHNZcfx+vGoFn3tnRH2zjFIXXZHjBsgjQ7vhhl1TvhAKmMvrmpkXYMMbGdq5egFugw6u3c2TXqBSiU+U4N+L8ejo/atpDHqLXMCSm66mpiUHvQn8g+CmpIdaQJHXa+aO0JTFSVNpqJ0a+QmB/lME5xe0MFhQHZyQlE4bgjMEEkaxWmS05LClmi0sLDYx2EthR0Go0D3hbcnJUvShftp2TMTENMcc1msFkLxapm5Th5UwPM/kJl/tpJbJ2gQ0zFvLKC6Ts3lNC3RPsEoOMOdr2rMf0Ym43SJYtyaplzbmrpmTtpfAnHMcuDGwfl0U4KxVt1+DQ0R+o1V1eQjRbqMsIqQRFdCmUZK6pJhbLdMmnUmNxaGcVt2SQmpuxE6K3naOSXoLXE6tmg/o1iWOb/Re75xmRR6verVuTx+hvTDnyIkYaxqPbhilfhzhASNFce4YOQQ2sI/vy0GdTtOUsJx/6xkDtalwaqO8lyaSkvoqs/tWJWYW9QY3fB0ez2spWBhYdEK1lJoFzRjMHA6eT1k5lq/VLMNiXBoHyGtlmvsvlnnf15cy+xvRJfgZ8eLiMeDI3vymgb/jNOQ3HuUCDulR5Y3c93/UMuisrI2D+dJ+8MKMjyrpFhdklGdlvtnJbFM+3H3yJ4AFBxcAKpfkKX6C0TjYPQb1EKoeEeqKzF9CS9qZuNpms0YibteSPLrGop9dGcRdV1T1+yt201dh7DP59WCMNmgXVKC9FNXoQmj9rQRmip5RYnRkAZaNdTlQlQslYPyhYydWVrPC5rX8F9a4/LhXb0M1OfmCW9zTf9O3DhYyNUPV4v101Ra7XEgrtIuKVlJ7Guwg8J2oa9u5QeJ38fZSrJNT5aIw8Nz08jQF8G8qI8qkfjFohJvMDhf2fyXlpThmOi5cVLC7eZ88ULU1zWTpAMF/fZv0Q8ZFB4/TvpTH43ztZKTPdNlcDLEWXlTlEPUXC7Qa0bnryegkX5xVUz2HdAJJouAyUGnS9rznGXyXfyuExl3iAwAnUz+c0kdL+hg9sg3cn/Ha1zDqtp6PlR59mO7yKDWJyPJZGR7npf0oI9hGjX5r++MJ8CQfzFml8o9NdRo6nR2KqhXJV8HmF59O5C6iejDayb+ku/G3grA/p2FrHx/TRXD9HkcpNf+cKWPKUvkXtOOFTXnAfug98EuHywsLFrBWgrbjGwS9XTF5M7vkslLWnzFmM4ndM3EBMr94lMp4urEZWb/8urhNKpb7vezZRlxz8VHMPRnZ7W+1EBxBaawCcwTgvFIjQ/4v2+LPQETYy4vUvfg12X1/O4gWc68OU3yBo7qlkmT9nudloZ76cnZ/OlriQdo1ui+zE5yT9e/t4i/GfekEpqxdxcRNmIs6r57fmlCG9HMxvupteTieuXonl4ss3Kv9LDX38HqBp3mV8soVkuhpi87GjHpNsUgRVKbP9Wsyu5pIXqkb1oApr/GQUxV1+RHhdWeRXOLpqN/OGct64ukT3X6IP0NEfY1WEvBwsKiFdplKTiOkwU8CgxEmKErgIXA84jm2ArgXNd1KzZxij0QYYxysC9birOWVDUSKxcX2ovLPpPtJ50geAQAT58rrrIUnelu+3Ityaog+s4bUreA3AIcx5QxU7LLNTJhLdGc+PiOSAwb3YOze+ewXmc2E9dvSsCd36cDCzQa0pRyu+erQj5Vko0ymd1vO3MYTR/8VPYNGKQX2vTcUTB6DKbk7flviK7DzX9837tfM3sn6b13DAe8bMrF2h+/A+epmOs72h9/nszi8dpkXCVIiUmuB6FcTNm9HCVvl9c0c4cpPdcGrnlYMiifO+S3AMwvjVCk5OrFakUEslOJFkuf3lIr5jzN3diX0N7lw9+Ad13XPdtxnBBi6f4WmOS67r2O49wE3ITUl9xLEAWUnKsw6kazgZUbtFvJWYdKIRHDvBvVny6pQR6dJMQXjgwwEyb8HZMGvFksl0hCeh0Iv5JIycENkjxUf/9bfK7KzobEM+x/0OdwuqospWt/phbW8LMjpMDK+X+5XBomGVXnbUfPU48F4Fnd8tUsbv6d1BcuqpdBMOBzOFVVjczy6oVl5VRqHIGRczdJWM3xOFNWynOJlejzbq4FxDOypFB+wvmdUjnxgoM20zutUalek8mLS73yeN+p0M0tw7tyxwx5Yq+qIM3pQ7tsyyPYK7DdywfHcTKAo9ECsq7rNrsytY0DntRmTwKnt7eTFhYWuw7tsRR6I7XG/u04zhBgFnA9kOe67joA13XXOY6T2/5u7k4IQUBj8KNGfmxDK0Hwvy+k2EhJo7q3NHpwdNdMz0IwuOOOX210/FlHnSvnmf5CYmevAzdqR7L421OuOoysG98E8KIMR6hYSWF9hKyLZDlzwYEDZbt2CRSo8EuRipakNEJGfuvz14iF8/kDr/Pn98RS6aEuz6L6CHddKeftNX5c6+MOGsY9b2uU4VsfAHDRfVMZpWTsg1oR+7KVlV5BG1OE5ch8aZMT9nsJWvNLTAxDNUajMU+f6cEdUwmNPnTjZ7MBrrtQ+tMtLcRtM4XkNcupueUNHpn5hUZYXv7q/C2ec29De4jGAHAw8Ijrugchuts3bf6QBBzHucZxnJmO48xsRx8sLCx2MNpjKawB1riuO0P/fgkZFNY7jtNZrYTOQHFbB7uuOxGYCOA4zp4jrh8cADqbEP1ss03T82XGzVKh0uc0S/GRp65po3XDRnt+9oOTALjrzOu45Zk7AJjyqjzubyfN5MeP3tL6gPyBXHT2CgBef01IyIfny+PvlhbijE6mxoP+txsrASC/V+JzufTzuesfBfACkBZVNXouz3U6exfWNXPqn6T6061TRZH5vMcTVk/9828BkHLeaQA8k9eBB+8VIrJSc0FSAj76a87D089L2TtDPHZKDzNvoqREz/zfdAAOPfsKjARdpZKFT58/GPwZbBpi1X3+oZSaP6N/J0+wxkjLDeuY4kVZfqEVq15evRU8z16G7bYUXNctAlY7jmNC7MYA3wKvA+N133jgtXb10MLCYpfCcdtRAcdxnKGISzIELAMuRwaaF5C64auAc1zXLd/CefYgS+FCiBixjymbadiXUMExAPh0Vk3VIJ/S4kcZ2OM4AM4+VKyJO/73X0Q8BGCzj8uD65oMvkR4b/HfJfL/1pdbr4W/Ka+nb4bMiE9NvYfN4ewjxVn0rQqlFursmR0OeHkLS3SWj8RdkvW+jNDrVf3FM/DrV25j+Z+eACBLvQvZt1zJ+vulrHueiqRGG2M0qgnym49XAHCLBlqlh3yknXKAfHn4KNk21OCkjNXeiifoxStHcfajV+o+de3WiVVAMJm69+cAcPCN7wAw84IhlFWL9bBa7+/A7GRPlGbsK1qDs9xYCq9s9pntIZjluu4hW2rULpek67pfA21dZEx7zrt7Qis/RwqBL7fYune/sSxbKqa701HM2sqpN+i3LvNXCbE3f9VH3jHrvhZNxvwhGjWoNRvefeRluuYJ8TboLNUhpBy+0SrSgw7wznHyPyV1u3+21nHQGIbc5CBBv8OmIeNyoNOVxDQp6Ng+Oa1arKlt9tKjTcxFfTROUH2L6+pk8PubJh39Guh1sbgnP7ztRQCOI07euSPlhO/Lc5w3Zx1DTxKD8wrVcjSp5WG/w2GmXsXh2pHkdFx3CgD7d5OlxQ1Tl3PSva8CkKrpz2iMxC0vfOMlcC3SOhfvLyvnrKGyZPlO+zunrN7LwfArURtrVbR2z5m72gMb0WhhYdEKNvdha2GiDQMORBo33S5dKictW7wMAuI2u+sIibQL9x/gNXNdce3dctkfAJg+638JC6FBudmg/Pec+KNzWhzXtuSYwcy3fwjA8WcISZipgUohv8OX6mZ76od/ASBvSGemq4vxLs2M3K9LhneMyVEweRqHdkr1IiZ76Gw8q6SOsFoK2pyR6k6kpgg052GERg02/PMFkq8V8RmuFHJzKMBUIStNrYuQHnfYDadCQVtRhXL9havlPr959AUue2IWAOV6joFaFu7Bjxdx4ngxM0IaHDVtXTVnaeq0yWZ9aXk5n6jATZKmaddVak0I+gKL2+jH3gdrKVhYWLRCu4jGHdaJ3ZpoHAzAQ2fLbP2zl54AlrbRzuQJGA9sfwwJ9thNQipecU+igpGj0+rkd6cBMHrsSL74+UMAfLlW1r1mfXv4NcNhqAQcMU2qQs146Wv6HCkzaMeTdbFd3sDHE98D4LNvpR8LNUsyjsuLmnNgJMcWFtZ4scYdVSiltKaRTkpIGsETI6qanxykUEvGG0m3vOQgKzXDcqFKnR2uFaKOGZDL3c/c3PoxVRRC9gahw+Xl8Oy78vknF7Kj8MyPHgDgtvcXM04tFcOxvLK8gpIfHQZAqSo33zWrkAPVujDh1ue8IpoWDZXFwLs7rG/fE7aKaLSDQguMGiXs9tSpiYrK/zz3LgA+WS0eh6c++8fWnSxwLiQJ0eXOvk329evrff3QX54D4Gc3iCn9j3P/4OkZmhJrLdOgTaGV15R0c4Ez9OVbqwTftxUN1Cmjn6aCI2uVWU/y+5inMvHfXCI5AtOWlzN+8jIASnVZ4PM5jFGVJ/NiNCrxGHNdz+uQrP05uEOKJztvkq9MGvQnRbU8fKrEQhx3n/EMtEhv1kK3X//8Xwy9XdPGO3bd+Fm2E5OvvZ9TX5DB9LWzRSn7uMc+44wjpIL208fK/8t7qyuJ6z2c1F2ebUwHzQP+M5u1yw3BPGuH93EXYasGBbt8sLCwaAVrKQAbPgMx7WVGIajKxpEX2BYkd7mabPXpr1389022W/qy5ARccMdbng6jIcqMAvJbqyrJTZJzZauQyeF5aazXaL4ytTCcFp9NWrARN3lndZWXe3GvphgfkJPMFR+JpfBNhczamUG/l0VpCq8elivLmIWVjR75GFL3ZtfUkKdBafr2iQqfBHyOd6yRhTsqP93TqjQFWu4+ri/db71qk8+ovXCcAcAC/atAt2tbtDDZlakQEpGXw3qJ9XDjYZJF2jk5yK9nSHr8p1+/o+0X7qwu7yxYS8HCwmLbYV2SLTBlypQWf6nbMdJm6sZmILNxTkqQO4YVbKEt9DlOLJLPF6/lz5+LbFutxuS/qFJpQ3JSqFWuwLgLI3HXq59g9pU0Rgn7ZJzfXy2EkM7QI/LSvGzDv2uwTqfkgDeTm0pVSQEfPdJk3Z8ZFKvDZDA6TsLt2F/zBUoaoh4haeo9GDLv0E6p3uch+TIDf1Ne7+WCjNJS9Jndt6DhUKHFZrPzN99uQ9SbyNAFLXaubaPhV4mPqmEzY6HkZ5yjxkAo5RiyO6rVmKqTbd0eZylsFaylYGFh0QrWUgCOHXs2AJPf/1+Lvd9tsN069OwsHoyc5CBjVD59s8iQPIHlFfVeBakFmnNwis6gc8rq6ZIqs7Fh9ueU1XsBRGpYUB+Je2pCwzrKzLywSv6ubo4xUnUMTABSl9SgJ7pakJqo62iuf5QGIX2nf4d9PjooH2AKxyYHfF7dxaXKLdTqd/2zkrhzuEqkKb+yrKiWJXo+Y7lkFtdBjeYYpG9gNXz6MX3HiQdoyYInZF/Hzpt4mBsgRcK0Rw06hanfvLl1x2wCzfWTWb9qcrvOsafADgpsOBi0D727SFRiXTTO9OXiPuy5Fcf97pNV3ss3WmskzFYV40jc9VSOvZwAn+OZ68Zl+NaqSn44QDRt3taU34Da+/tlJXnH9tE4hJpI3FuiGBfjgOxkj6Q0RWHfXy2p0+khH6PV5HfUyIzE4x4xaVIrhuiA1CMtzDK9Zj8dwAJOYlDyCsfisv7uZwHIaxHLAcCIkXTtIgPKqaMl5fwvv72SfheKoNf8ryRm5MCuYZzc1hqNkz+WZcOUuW/Acmnn9L4MgIy0ANW187RlKRYJ2OWDhYVFK1iX5A5Ghx7XAnBghxSPSLvzzQmbOUJM7qGDfk2WRgmaROg5Gml3VH66Z6KbjESXRHCTSf0N+hwvkc+IoJjj8pKDngVwhEq0raxtordaDcYNmhRwvGhFE5RUqiXoypuiXpDTmb1VBCU56AX8GAvgoA6pXh/NEmeFLi1Cfh+rNQLSKDGf1iObT1QS7fKrj5R2x43ezDODVZPElO9xnKmVsWnB8Ccm/Jvxt18mf1Rqu2ff5WeaXv7YZ0IYNtS9tNlr7gWwLkkLC4tth+UUdjDK1om7b1pRihcuvDmUviTFW0fkpfGt5il8ozO0mdHDPocSncm76czbUtugQcOis1NCzFQewsz2BRoAVdYYpY8WkzVh1BlBP6WNMrubkvWNMdcjH9MCYrPk58iavqwpyn6ZqkugXEF9NO7lUhix07Eqz/5lSZ1nRRjOoro5RsBYPSYQyudQqeTkz+6RYK5zX5Gw5DE3nApBdQ93T4jWdu9l8ic29xMWF+ZlE67nsgkiYe9ZxheOIe9d0aM442AR1v3vx5s51T4EOyjsaDRP1w9HeAVZNoeP3xQTti4a90x4Y3IbIZMVNc0ckNW6mnRywOcVkz2tpzD2r6+oJE2PCSvrZ6pOpwR8DO0gBOBkTVxK8jteHIOJjeibmURUy9u5uhap00HEh+PlWfh08RL2+1ir95ni5WcIyZkZ9nv1J8zgMDAnxRvgzOBT1RzjTa3tYGpBvKXVrb+96Vku0IK4Hf+gcQqxMPQWURa3WjQdnYy2PBIa30AqXvG9Wq0dkZnLEh3YTIQlgQMhuu+pN28Iu3ywsLBoBWsp7HCoeyslkzE9sjffFHhPy6Qtrmr0ZqxU1To0BF+XlKDndjRxAkurGxnVReIITDm44oYIB6k70GRJGtGSfplJzNKS7ul6/qDP8dqZWbN/dhJzyoyIjOMda/pYr5GVXVLEmhmQncwKJQ5NnILpfzTuUtiU0HcEWFjZ4BGeJvNzVW2TR4gadNIoydpI3FvifHLVYwCM+/cvOGfIFQD8+6U7AXjlz//mjBsvb/MZQ2dwpB9OuhSudd0ITzwmmZuv/P5lACb1HMX8JdZSsJaChYVFK1hLYSchLSNMdSS2xXYmNyA7HCBfZ8fGmKzhjUrymrpmz0JoUoshOxwgop9NluLAnGTP2ihSK8Os8yNxl3rlDUx0ZElDlIBP9o3Q6MWShig5mu1otBNM0FN2yE99TLMjlfdIDfi86EYTYGX6c1DHFAyvZ/iScErQC3Yy5GPchc7ap3S1XIwVkRnye5aFuc5d4+7mxTmPy4ldCaw6/ZeX4f7yMgDmzhIX45BDTF2LJZ6r9pCC4YmH30cyIY2l1TUnGWsn2EFhp6F2/Xre+k5Y+Ks30868XHWRBCtvmHhjUDuOQ8hn1JPl5RqQmcx0LbHWXROYgj7H8yyYuICTumV6fxsT3qApHqeuXq41MFte6CXVjR5BaiTbu6oHo6QxQqp6JMxg1hSLe4PGQB0UDLnZFHO9QckkUlU1x7w0ajMI1kfjXpKUCVgx5GaPtBBmaO2k6eOPflfCoGtFZ3LcX06WL1OTvSc2eJiSkLVCNDppiUSqmWs3VuI2Zewqm2O8F9LzNb+9Ubt9BXb5YGFh0QrWUthZcBcxu3jLZcx7aYLTrJI6TyDFiJUYeTZc13PVHZYrsQvzKxo87URT4yHs8zFL4xQGqqBKjc7okbjrpTivVksgPznozcyGQKyNxGjSmb63ti9V07+mOe7N8ob8S/b7vNRtI/3mJW+lhfhc6zgYQjPkd8jS+zPLpLjreIrKZl+W/v11WT3Ha9zDosp671x3q+DJuArpB6mm+GwLpOZttGvM/qM22pei18oK+cnsLPkTVSuT9NvNKHfvpbCWgoWFRSu0y1JwHOcXwFXIUvAbpGxcZ+A5pAbabOAS13W3HMWz16GBwsqNi8ZuiMpmmYXTQwkZtBLNIWhWIjEnKeDlPJjMxcqmKL0yxMowM3nnlKC37jYzeoOZecMB1ilhZ2bj0qYoh6vIyooa+S/KCgW882lGthd4lOR3vPRuc1xdNO5d0+RgmLlmQWUjmcoVmIzOnHDAcz8at+aKmiaPhzD3bKyOnKQAxQ2t+w0wWy2Q2reEGky7dhAbQyyL2yc8wh0TJPty0sLVG7X6VgVt31xV6aWmN3Q9BYBFa/b6fIiNsN2WguM4BcB1wCGu6w5E8njOB+4DHnBdtx+SpXLlps9iYWGxu6G9nEIASHYcJ4LEka4DjgWMeP+TwATgkXZeZw+EQwxni63O7CnZhi8uK/fyCcysaSTT0/x+unvZhjKDdkwKosS+F3Jc2RQjI5QIHYaExVCQEmSJFlQ1FZ/8PoevNKDJYFVtM0M6CB9hcirMzJ4c8FHheUZk37LqJk+araihdSZnfTTuWRnGyxKNuyQH5GdnuJNvK+OeK3WG5k8crtyJ44igDOBdu6wxSlStmcUqeX8QMRL5pWLNEBULYMLYwTR9JjU473n3aTaEEZgpb4rxqyHiqbj61ekbtdtXsN2Dguu6ax3H+TNSWboBeB8RxK90E+WQ15CQz90KBIHI9nZpN0M6oaQtP948LT7iLnM95WVjOhsXZWbIT43GGBjyMS856ImaGPddJO7SR5cUKQF5gcwLWtYY9WIASjSGYWiHFEqUMDSDSO+MMHo6aiPSLtdEFzbFvLgDs+wpaYzSRwexDD2/cUNWNEe9WAujp1IXidMjTfaZVOtOSQEvj6OLKjSt06IzEdf1+m0GSRc8RZfrtOzd+yPeI3mw1tXQSE+Cmg9x+AjueXcEm8J3moh2bu9sL4nNbSzZZPu9He1ZPmQD44BeQBck6+SkNpq2qZXgOM41juPMdBxn5vb2wcLCYsejPcuH44DlruuWADiO8zIwAshyHCeg1kJXoLCtg13XnQhM1GNdgN+ffQu3vvKENIgtb0fXdgd0pLlqy+6soAb8dEsNe7UXTKSfIQZzk4MsrTZSamIJlDREvRnZBBn5HSeR0ahWhMl0rI3GvBk3SWfZpljcu0Z+SsKllxSQ74saxHow6ddRn+ORm+VaE6JjUoKYTNF+mHyLrqkhr6Sc6TcklhJmeVJUH/ECmYxuoymr5wfqlWA0SyFHOu9dH+Cg37zjyczdMEiWAGMmai6Ek8Pm8NPXJU27b6cchqpAjMxx+yba45JcBRzuOE6KI/+DY4BvgcnA2dpmPPBa+7poYWGxK9EeTmGG4zgvIW7HKCKePxF4C3jOcZy7dN9jW3vOW1+6fXu7sxsiBM31W2yV1lXWsHUtZnJDBJpZubI56rn2DOmXFHC8GdrMljlhv8cNGJi1W0444AU7DVcSb3Vtszf7mlyD7mlh77x99frG6shPCXqchuEqcpMDXph1s87oTbqNuS7Z2u+odiQj6Pc4k346s1c0RT3OxPTDuF59TiKwaY0e53MA3dfsib8mnocJE2eN8gLd2rYUKj+QkOdY4yQAFq6u4KynJFCKwNGyjbZU8+6u21rdlrM3ol3eB9d1bwc2fJOXAcPbaL6PwY9HmsZ1cPClbNxMX65OyUFP6MRE85kEoOZYHFeJdWNe90lPojGqiUrK4jdEExGH5uU1QiaRuOvFAJgXOjXoIzmS+N5sayOti9SaUnEVTYnCL+bFzg4FE94MbWfyI2Jx1xN7MSZpRVPUi+IsVpIz2uKaJnfDLKFKGyPeZxM5GXOhk5Kypn1DNO4NKF+XiQfjrNUqstJtf9rCP/5uyr+ZFPcKQEVYom/oPrOsygdk2XPcQKlAnpudxX8/fka/X9PmNfZE2IhGCwuLVrC5DzsNLiYmcNbjMusMu+q8jZupRFrHpICXk2Bmd58jxxekhjwJM+O2/LKkzpu1TVm3yuaYt686IvsyDAnpc7ylhyECs8OBVqnbIFaEiRv0Mhz176DP8dykxmqvjsS8GAoTu9BQJ2folhbyXJiGLEwL+rzitGq4UBOJee5Gc968FhmUJm18rrot+2SEvSxQYyXlJge8vhmLpWiaFM/NH7FxvgPA49/p8iLQS7bRZW20Mi7yRCTkh/OW6Kc+kDZaPtZ+rvuWsKfDWgoWFhatYC2FnYY4plrpS/+T+PxhbVVb79EDgIDzlVcUdnVLQg0h08wsb8i2gtQQ2brGNmv/uBv0RFjMbGkIvoUVDYxVbYXp62r1O9ebaU37wvpmuqsL0q/XNLkHeclBT7ats7owkwM+LxgqqBaAyR8oa4p663yzrYvGvapVBp1TEpZQY1Tuz7g8yxqjVCk/Ylypsbjr8QsmmjMSdz2rxFg46RoY1ibmL/QCt4hub6HYKoJ6Kzm5knuxvnjPtxTsoLDT8CXQG4DnFkjl6nvaatZVUnX3y0xinsYpGJPeRAM6Tpy6iElKSkilV+spDHGYEw6wqs6EQct/rSHwgj5nI/GU4oaINxiY5UNNc5xczRo2HgDTpksL74Mh/2oiCYIv3CL+AaB7WoiqJkOWSv+zQn5vqWDaFTVEPOl1400wqtS5yUHvJTdCM+khv+eR8LfwjJh+mvapV5228fNWTLz3FSINZmmwrZXFBScPPZ8D84Wk/NO7D27XOXZH2OWDhYVFK1hLYaehEhMVV1K9uXgFMcPDQZ/n00/2G5ehzIbfFTeQ5EUvyr7sUMCb8Qs1KjESdz1S0LjqTBLRgdnJrKlrnVeSEw54yw1jWYR8jlcubpCa3+AfRmoAABl5SURBVCaGoDnuetaLQbiFBFxOWJYdWaFEaTsTHRn2J9SlDSHougmLZUNS00QfxF3XW0o0az2KsN/nJY0Zi6Ux7noFa0doSbs2XcCKX3ywhEFa1u+L4u3L7L9kYAEXvvKN/lW1XefYHWEtBQsLi1awlsJOQwqggh1RM/+ZXIikjVrn7NeRjz6ScundNEKwSDMFu6cnXHAGwYDfIyQNCRnwOV6ewvr61laBz3GI6brdEH2RuOuVoWsZxRjbwD1oZujihohX08EIrVZHYtTpsSb1e39NpV5W3eRxBUZAJu4mSMdva8QiibkiJSefxSowQVpxElaMScN2nLjntjWWUHbI75GwB//ugg0fbwLVUtavvqyGksyN/x+2BVe9Phc3ZubV03VrIkrfaOOIPQPWUrCwsGgFaynsNByMsQjiNSLFzhwNjhkyYOPm3TK9gB1TI8Gsqyuaot7a36zXS5sSWZKGgW+KuTSoBLzRKti/hUaDya0wOQodkoKeB8DwB02xhCaD4RJMv/yO43kfTC5GYV3zRrkJpj/pQb8nRutvEb5coftMlmRTLO7pMxi3o7GtAo7jaSu0zI8w1oZ5SB2TAhzRU8OVMzZdmWvmi1PlQzTCmqL28QB11c8CRhw2Tbd7frizHRR2GlLwlgkZQni998wUAMa2NSh0zvBeRkMcmmIyDdE4ucnyX2UGgqrmmPdimBe1LpLQMDRmvnHxNcZcMlWVqSBVrpMW9Hs1G0zF6J7pIa/obKfk1j+PtXUR70VeqcuZjJDfe4GLNliy9MnweQOKcZvWRGI06ABXpfe3pq7Zi4o0yxiTLJXk93luWJPmHXddL0Xc5FH0Sg9z7RO/Zku48eHP9FMlkZo2pT62Ees32O75sMsHCwuLVrCWwk5DKp6bqkEe84ffSNbe2Laa9+5KRkjEPkx25Lq6hOCICcwxy4iKppg3oxtC0Ock8iCMAW6Clzq2kIaraBFQZFx7plZDzE0ELRliz8slqE8sQczMv7Yu4p3bnMOQkEGf47kMzT1lhvyeWnWSzwQlOR75adyyIc8t62OlBl2ZazZE456uorEYLrjw8LaeagtIu6lfG/GeLHBnbOGYfRPWUrCwsGgFaynsLGRlQqUSjBFRpHt2kYbEEiGRp68I57JcJdcMYWfyAbqkBL1ZcnWLUGVTByEnbLIIm7zgJsPD1TRLm4E5yZ7IitFOqGpRANcEILlugqMw5zLaCR1a1KI05KJLYgbvnJxQRQYJMjKkpiEfY3EIBE1ehvSjIDVElp7b5FkYiyfoc7zwacMtBBzHC+wqVBIy54zj2Bye/MNT5k51m8kmlAL3edhBYWeh8jPwa4GS2DoAik1xmBlfw2GHbnBAkG79OgLgWy6y5cYsD/gcT+vQEyHx+1ilA0RDSoLZNyXZTO5AfVSOa4jGNxJxqYvGvRfziE7Cnr+6osJbItS3UIkGWFrTRB8l9kzcRNDntFq+QCKKsaY55iVJmQrZaUHHG9hMjERhfbM3eJiYC2PC1kZipAVaezf6ZITx69Lj+UcuZmtw2S3P6qeQbj/equP2Rdjlg4WFRStYS2GnYSE5nUXco3xNGQCRcsnG++sf3+Xn/9vQUoCsy44HoK8WT90/S/YXN0Q9098sB6piMQZqbMGsEnEn9s1M8rISzcxsCLwVtU1eXYbaaGLZYJYepu5Cz/SwF+NgYMjKZL/PE0tJbuEONecw2Z3GbZni9xF15frmnMkBnxd/YSjRZL/PO8aQmuZcGSG/V8Y+T9O1+2YmkWvUoQe2VS6uNSbe+A9A/g9IlVR16vYeF+KOhrUULCwsWsExsenfaye07sPeB3XRdR4PQOU6iXZL7diZ2pLHN3lU9LEXAPjTG6IkHPY5LNM1vIkGXF3X7JWlL/QiCRMZiwY5yjGUNcXQpb4nvJIS8HkRhKYcXeeUIBUaXZi/QSn6zFAiQtG4HaNx1+MSyjfQX0gP+j3Xoul35xSzpk/oL0TjbsLVqtfuqfkfA7KTE65ItVLG9ulAr7t/uMnn56FUrAOn0zHg7yf7Yi9v+bi9F7Nc1z1kS43s8mGnQqtHVy0CIJAjoit1pWuo+GAaANnHH73RUYFLxwDQd6r41N9cVel9Z/QKo67LvHIx+Y2vfljHVMo0QtGkVZe18CQYE90UfkkPJlSTShsN65/4vsTTcjRFZHykxFoLqvTJCHtEpBnZjaBKYyxOVbOWlFNyM+x3PKKzUds1Efd0I81AZJKygj7H68+oAbnSjxsu3eiZtQUn/3z9lATx+GbbWiRglw8WFhatYC2FXYD6erEK+nQbDMDS8lqGjH8CgFWFG1sKBDsAMDBXRVoao16U4SytEp2fEvRmfuOyK6xv9iIHTaSicRemBf2eq9GkVTeF/Z54i5mNHRyPkDTnqFZyMy3F7+UymBiGxljc02Q0hVpNfsaaumYvtsEQpZ1TghQ3RL3PoEVp9BgjwGJiEoI+h6P27yT7ttJCGHf4DfJBXcEED4CILVS2tbCWgoWFRSts0VJwHOdx4BSg2HXdgbovB3ge6AmsAM51XbdCa0r+DTgZCR27zHXd2Tun67saJgIxstlWm8PShRow4/Ri9TqtXlSs9QRyu23U/oBbzgBg0tX/9lyAwRYKy0uqhXwcmS+l19fWNXszvifw2iL3wUQJGsGTjKCP+RUyu5soxK6pQY+sNASjybhcVdvMAdlJrfrRHHO97EzDFRhfY0444PU7PZTof43hC0yYIwkOIcvjHqR9h6QAqddvWoC1JT7789MAvD7DBCZ11JNX0p7/t30NW2MpPAGcuMG+m4BJruv2Aybp3yCl6Pvpv2uAR3ZMNy0sLHYVtmgpuK47zXGcnhvsHgeM1s9PAlOA3+j+p1zxc37uOE6W4zidXdddt6M6vKtx+y0PADDh9z8HoHfHoSwvm7OdZ9Pjsg+C8hUA3HLtvwG465XbNm6eVQDAT28/mQcnvA3g6Q40RONeqLHRVYi5rscppKToTKtr+kjc9bIeTXjxsuomL0fCrO+j8URYs3EnGqugKRb3PAsm67A+GmdVqQRPGS9IlxTDOyTmHMNnxFyXTupBMedKCjhe/UkTim0Coo7s1wFCmxZNMaiY8gkjfvW0/qVCrE5v7eoLWzy+vbh5/G8AuPuJO+XSTninX3NnYaviFHRQeLPF8qHSdd2sFt9XuK6b7TjOm8C9rutO1/2TgN+4rjtzC+ffbeMUhnU5GICZa2fJjvJ1OB26tPOsAyBwoHyMSnq1677FZsfoYtFv/PX4JwGJVFxb31qFuKo5llAsMrqNumTomJSoOm1e8ribEC4xZn6/zLBHGCYGEfmBr6+PeEVYTHHYuJuIeDRJTQdrKbzF1Y1ezIIpd7eoqtEjKbulJnIfTM6DqWB9VL7EYBz88I8wWpdtwV0sasq+AXe0KOqSqlvzE31vk8fvKCTeI1lyOU5w042/P3wvcQpOG/vafOEdx7kGWWJYWFjsRtjeQWG9WRY4jtOZRImdNUBLxqwrm8hPdV13IjARdm9LYVbhBjxpTmeCSRI/H2lcuZ1n/ZZg6hA5R5XMiGMG/pxJ8x7e9CG5fQD444vXA3D3RQ97S4MlmnKdEfJ7uRFmmWHcirXRuLcvoBmGy2savTwII/dWG4l7Zr+Z/ExgUWMsTq5f2hk3aHM8TkWT1mBQctBEX+aEA56gS8tCtoZfNBGKPdPCXom68YfIkinzpgv1xjdhJayV8my+QXfJ39GVgJaJ8/eU7S6IXrz9ut+3+nv0gWN2+jV3NrbXJfk6MF4/jwdea7H/UkdwOFC1J/MJFhb7IrbIKTiO8yxCKnZE1ClvB14FXgC6A6uAc1zXLVeX5MOIt6IeuHxLfIJeY7e1FAxGHXkyAFOmvwWVUsLcyc5t93mdDpcD4JYVMvMNIauGnXLMlg+sKuXX50v9wqXqmnRIBA4dagKfNFBobV0zmRqubArIrq2PML9cNB5ykuS7muaE1Jk5l5ntG2LxFrJwMsv3zUhilhKNnvCK/m/mJm9siGaFAh6BacjH9KCPK047AIDARWdu+d5L1xPufSMAzTWmoKsP/F3lY8xUbVqw5XO1E4n3x9Sk2K1Df7aKU7AJUdsI140C8mMe2UPSn6ev2uK4txmIyZuacx515YvlGrH35avNlD0DoFmqR3/4i0f17xjHHCuMu39YXwC+e0bUi38/eRkj8mSpYgrGLKlu8qpIp+iSYXl1k/dyb4gkv88TSDFxBwOykr14CSOCYmTlG2JxzxOR7MnROx4JaiIhz/vhCBgxcvP3CrBCiESn/23QVKE7Vbgm3B2adaXqTtnyuXYAJr80idFnHQvA6J6yHJy6cu4uufZ2YqsGhd16WLOwsNj1sJbCNmJo5/34qtC4vtRsd9pXfkxwKKagSChJCp82Nby6A86riNTh/u8DAFyVhfvr+0tYoTJvhpBc3xDBZF8babceSlCWNcW8HIzK5kSkpPkJLVWCcWC2WD9hv+NZDYZIDDoOI9TdeMDvz5YD0zfv4v1u4ovS/tondU8ZnrsxLMVk/eEYsernt+ZJ7ADItV23AirFYnGyc3bRtdsFaylYWFhsO6ylsB1wV6lDpVs+AK/dO5HTb752B5z5VN2KfkJKisyodXVv74Bzt4GmWs48ViLwemjQUF0k5rkPm9R6MDN/3E2IoJh8h6rmmJcbYURWhqsIbNDneMVmTaDS0IM6k3zNWdqBzQX4CD8x+Ud/59gn1S3cYLzbcQiJdRFIVqGWqme27d7bAbdJVbpDaS2sxKZNtt+NYC0FCwuLbYe1FNqBls9OEkcBKtpuvE04RberZBMswG02oSA7J3z2tcv+CMCc8novWMlYDF1UQi2O6/EHxjU5u6zOk1LrqtbAEA1zPrlPDgNO3l8OOGaEXmkLHpX6agDOH3s3AM9PXwiU6pfCtfhy8kgLqdZD0RPbdqPtwG8vvRmAPzwpfXvxgb9z7g0/3WXX3wGwLsmdjZNOugKAt99+DBDXnuMk74AzqwEXUJ99tAyQWICFH/4FgP3GHLkDrtMGKotY96935VpLROOwUMvX1UZiHmFoalIsqWpi3DHiBu17mUbzpedvx4U1KjPzKgBqqjWlnIAnOuPvkAlArGQhxHZ13YZsXLe81R7HaSuqf7eGXT5YWFhsO6ylsANQs2g1af0kmm7KExJvf8zlZ23ukG1D8tmEQmKBNFfJDNo7vydL59wj3+duz8y8GyFWj5N8gXyOGJFaIT59mV3o3VlEZJZ8Z8jEHbFE2za4bgwzhzpOmu6t2+X9aCespWBhYbHtsJbCDsKGz3F0v1FMXTJtB15BchnCnc6V60XiNGsORmaWiJBMmngpw845YQdec+fik6fF1XrUJXdiQsdBCNucbpItWb7uO4hO/R56J1g+VwLVeg7aj9HHSubm1MnPbu6Q3RmWaNy1EMVh1y329jiOagSakmU7FD05cIDENRhvQdGKCtC8hR7dhJS7/lDJZB988iDGXGTSendEBOb2YeFbn9H/VEn8wi3RvV0hTZZAqSZeosgsFRp3bQcVkx8WFafRP7kIgCkfTuGY47ciUW33hl0+WFhYbDuspbCDMWqkaNxOmfaOt2/nWgxgTO7sDsfRNV9m3BIt6FqkuQ1JAf//t3f2sVlWVwD/nVBaBIIVEKxUPlxwfIlgHYGxhDJh2E5xMqOQJpBhRlhMxtgSFfsHLwluEJkDFgU/pkzH1xQVhCkyaEnQUVazrSvQDhA2GVDGUGQyCYyzP+594X36RUv73velnF9y8/Cc+7y9h9On5z33Pvc5hy9r3FuV8dQ68wsGMKBwCADf/c4IJ7wxt/XUqtjL9NkrAHhl204vPMvFZCiZLroqGNaHD6tdmH7q1DutN/4V8PBDLhfnmrUuNyc1/jX5m1r+mnwaYJGCYRjNxyKFJPHcrPn8YHFxRJZ/u9twtL3ywwAa+EKunVwEkJWRw6De7n2BL3yi1XMXlCO+jP3Z0z6KOK9kdnGLmnf1cGsP4/NdcdZ2t+Vw3629Adj9qXvTct+mD1i4zSUz+fLzM37s+K7LMyBuB+P1Xd1iaOcuWReTq1Qd8AuxF5OipJapk3/Mr1f/3J+5SEsks+EPXH3YQmOqWfvYAgAeWvh4RF763nbGFuSnQKPGiN/8OZDRDwDp4KYiesH9EbfrmEWfbi70//iQ292XcV0m1/kK1Gf9vZTlFztPn6qB/+zzP/eAP0YzUKcD5Tt2AZA3+mvEU9eL1J9o5irHpg+GYTQfixQCMGaEmzaUlu2o0zfxWy7RyDtb1gXV6VpnzKBxlO7eEhWePIl065YahcJgkYJhGM3HIoUUULPnY3oM7FdLquTf7jYXba8sCa9UG2fMwPEAlO7Z4CWXNnDFZsQAmPfivMBaBcciBcMwmo9FCinDbWjSeN2CztfXuaJ4qkvx9tPXXgimVVti7gz3SDj2/Pw6fWVlFYwceUdolVKNPZK8uuiOnvBZorvVzQxc+vYHAIx94NteciqQXlcJ7XtzsMRlp+o7elid7tJ33Y7KsYWjgqqVZtj0wTCMK0BVG23Ay7gCspUJsqeBKqACeAvITuibA+wHqoEJl/v5/jNqrW4rWfW+lqx6XxtiyaJXdcmiVxU6+pZ6ncO0G3Xd8vW6bvn6Bm2jqvrUgqX61IKlaaBv2rTypvw9NiVSWIGrDZnIFmCIqg4F/oZzBIjIIGAyMNh/5jlpo1vDDKPN0sRv8r4kRAq1+h4AViZECXMS+jYDoyxSaHkrKpykRYWTVPWsb/VzqKRcD5WUa+HQcVo4dFzK9W5pmznufr1QWaUXKqsajQr02DEdkZunI3LzUq5zGrcmRQp1ywI3n+lAvF5XL2BnQt9hLzNayMrfudyPKyXromzuzO8DEFv2Sy/Jok9+HgCb/lJrtx7AZ8fc9YvXAPCbF3/LgSN/SJLGl6d9h8EAPDl7CrFZU52w5y2X/+C/j1M0xT2ZWbWlFUvrGQAtcwoiUgycB+JpcurLea0NfHYGMKMl4xuG0fo06ZGkiPQFNqrqkATZNGAmcLeqnvGyOQCq+jN/vhmIqWqjX0f2SLL1GNxzOACxmNud9+DM+xq7/DL4VGhHatzxwEl2HnHFWipOulenT/z3HNm+BsRXurgoJq+7e/W6e+9suM0lUiGjuQVYXYq5WOwl5s170svCZ3FuYyTvkaSI3AM8DkyMOwTPBmCyiGSJSD+gP7DrSsYwDCM1XDZSEJHVQD5uC14NMBe3oJjFpfxiO1V1pr++GLfOcB74kaq+W/tn1jOGRQpBcMlP5j46DYCheQ8z6Xv5vq81lpeayGkXecSecZWo/v7711mxY1O48a9dbEej0Vp08sde3NTDZVC6uaNzMCfP/o9DR+Pl1OLZmaPl1Yy0wXY0GobRfCxSMIxrB4sUDMNoPuYUDMOIYE7BMIwI5hQMw4hgTsEwjAjmFAzDiBBwG1ujnAC+8MdU0x3TIxHTI8rVrEefplyUFvsUAESkvCnPUE0P08P0SK4eNn0wDCOCOQXDMCKkk1NIl+IGpkcU0yNKm9cjbdYUDMNID9IpUjAMIw1IC6cgIveISLWI7BeRJwKNeYuIlIjIXhHZLSKzvLyriGwRkX3+eEMgfdqJyJ9EZKM/7yciZV6PtSKSGUCHbBF5Q0SqvF1GpcIeIjLb/04qRWS1iHQIZQ8ReVlEjotIZYKsXhuIY6m/bytE5M4k6/G0/91UiMhbIpKd0DfH61EtIhNaMnbKnYKvC/EsUAAMAqb4+hHJ5jzwE1UdCIwEHvXjPgFsVdX+wFZ/HoJZwN6E84XAL7wenwKPBNBhCfCeqg4A7vD6BLWHiPQCfgjc5XOCtsPVEglljxXUrXPSkA0KcCkH++OSEC9Lsh5h6q00JQ98MhswCticcB6pHRFQj/XAeFxlqxwvywGqA4ydi7vZvglsxGXFPgFk1GejJOnQBTiIX2dKkAe1B64kwCdAV9zmuo3AhJD2oFadk4ZsADwPTKnvumToUauvxfVWGmopjxS4dBPECV4rwmerHg6UAT1V9SiAP/YIoMJi4DHggj/vBnymquf9eQib3IrLp/aKn8a8JCKdCGwPVf0nsAj4B3AUV0n3I8LbI5GGbJDKe3c6EM9/2qp6pINTaHKtiKQMLtIZWIdLMvt5qHETxr8XOK6qHyWK67k02TbJAO4ElqnqcNy281BTp4v4+fr9QD/gZlyCyIJ6Lk2Hx2YpuXdbUm+lKaSDUzgMJJYFygWOhBhYRNrjHMJKVX3Ti2tEJMf35+CK6yaT0cBEETkErMFNIRYD2SISfzclhE0OA4dVtcyfv4FzEqHtMQ44qKr/UtVzwJvA1wlvj0QaskHwe9fXW7kXKFI/V2htPdLBKfwR6O9XlzNxCyYbkj2oiAjwK2Cvqj6T0LUBmOb/PQ231pA0VHWOquaqal/c/32bqhYBJcCDAfU4BnwiIl/1oruBPQS2B27aMFJEOvrfUVyPoPaoRUM22ABM9U8hRgKn4tOMZBCs3koyF42asaBSiFtNPQAUBxrzG7gQqwL4s2+FuPn8VmCfP3YNaId8XCUucHP8XcB+4HUgK8D4w4Byb5O3gRtSYQ9gHlAFVAKv4WqMBLEHsBq3lnEO9w38SEM2wIXtz/r79q+4JybJ1GM/bu0gfr8uT7i+2OtRDRS0ZGzb0WgYRoR0mD4YhpFGmFMwDCOCOQXDMCKYUzAMI4I5BcMwIphTMAwjgjkFwzAimFMwDCPC/wEk8ojMFEt+jgAAAABJRU5ErkJggg==\n", |
|
|
676 |
"text/plain": [ |
|
|
677 |
"<Figure size 432x288 with 1 Axes>" |
|
|
678 |
] |
|
|
679 |
}, |
|
|
680 |
"metadata": { |
|
|
681 |
"needs_background": "light" |
|
|
682 |
}, |
|
|
683 |
"output_type": "display_data" |
|
|
684 |
} |
|
|
685 |
], |
|
|
686 |
"source": [ |
|
|
687 |
"plt.imshow(\n", |
|
|
688 |
" _read(path_train_img + 'ID_ffff922b9.dcm', (128, 128))\n", |
|
|
689 |
")" |
|
|
690 |
] |
|
|
691 |
}, |
|
|
692 |
{ |
|
|
693 |
"cell_type": "code", |
|
|
694 |
"execution_count": 18, |
|
|
695 |
"metadata": {}, |
|
|
696 |
"outputs": [], |
|
|
697 |
"source": [ |
|
|
698 |
"# Augmentations\n", |
|
|
699 |
"# Flip Left Right\n", |
|
|
700 |
"# Cropping\n", |
|
|
701 |
"sometimes = lambda aug: iaa.Sometimes(0.25, aug)\n", |
|
|
702 |
"augmentation = iaa.Sequential([ \n", |
|
|
703 |
" iaa.Fliplr(0.25),\n", |
|
|
704 |
" sometimes(iaa.Crop(px=(0, 25), keep_size = True, \n", |
|
|
705 |
" sample_independently = False)) \n", |
|
|
706 |
" ], random_order = True)" |
|
|
707 |
] |
|
|
708 |
}, |
|
|
709 |
{ |
|
|
710 |
"cell_type": "code", |
|
|
711 |
"execution_count": 19, |
|
|
712 |
"metadata": {}, |
|
|
713 |
"outputs": [], |
|
|
714 |
"source": [ |
|
|
715 |
"# Train Data Generator\n", |
|
|
716 |
"class TrainDataGenerator(keras.utils.Sequence):\n", |
|
|
717 |
"\n", |
|
|
718 |
" def __init__(self, dataset, labels, batch_size=16, img_size=(512, 512), img_dir = path_train_img, \\\n", |
|
|
719 |
" augment = False, *args, **kwargs):\n", |
|
|
720 |
" self.dataset = dataset\n", |
|
|
721 |
" self.ids = dataset.index\n", |
|
|
722 |
" self.labels = labels\n", |
|
|
723 |
" self.batch_size = batch_size\n", |
|
|
724 |
" self.img_size = img_size\n", |
|
|
725 |
" self.img_dir = img_dir\n", |
|
|
726 |
" self.augment = augment\n", |
|
|
727 |
" self.on_epoch_end()\n", |
|
|
728 |
"\n", |
|
|
729 |
" def __len__(self):\n", |
|
|
730 |
" return int(ceil(len(self.ids) / self.batch_size))\n", |
|
|
731 |
"\n", |
|
|
732 |
" def __getitem__(self, index):\n", |
|
|
733 |
" indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n", |
|
|
734 |
" X, Y = self.__data_generation(indices)\n", |
|
|
735 |
" return X, Y\n", |
|
|
736 |
"\n", |
|
|
737 |
" def augmentor(self, image):\n", |
|
|
738 |
" augment_img = augmentation \n", |
|
|
739 |
" image_aug = augment_img.augment_image(image)\n", |
|
|
740 |
" return image_aug\n", |
|
|
741 |
"\n", |
|
|
742 |
" def on_epoch_end(self):\n", |
|
|
743 |
" self.indices = np.arange(len(self.ids))\n", |
|
|
744 |
" np.random.shuffle(self.indices)\n", |
|
|
745 |
" \n", |
|
|
746 |
" def __data_generation(self, indices):\n", |
|
|
747 |
" X = np.empty((self.batch_size, *self.img_size, 3))\n", |
|
|
748 |
" Y = np.empty((self.batch_size, 6), dtype=np.float32)\n", |
|
|
749 |
" \n", |
|
|
750 |
" for i, index in enumerate(indices):\n", |
|
|
751 |
" ID = self.ids[index]\n", |
|
|
752 |
" image = _read(self.img_dir + ID, self.img_size)\n", |
|
|
753 |
" if self.augment:\n", |
|
|
754 |
" X[i,] = self.augmentor(image)\n", |
|
|
755 |
" else:\n", |
|
|
756 |
" X[i,] = image \n", |
|
|
757 |
" Y[i,] = self.labels.iloc[index].values \n", |
|
|
758 |
" return X, Y\n", |
|
|
759 |
" \n", |
|
|
760 |
"class TestDataGenerator(keras.utils.Sequence):\n", |
|
|
761 |
" def __init__(self, ids, labels, batch_size = 5, img_size = (512, 512), img_dir = path_test_img, \\\n", |
|
|
762 |
" *args, **kwargs):\n", |
|
|
763 |
" self.ids = ids\n", |
|
|
764 |
" self.labels = labels\n", |
|
|
765 |
" self.batch_size = batch_size\n", |
|
|
766 |
" self.img_size = img_size\n", |
|
|
767 |
" self.img_dir = img_dir\n", |
|
|
768 |
" self.on_epoch_end()\n", |
|
|
769 |
"\n", |
|
|
770 |
" def __len__(self):\n", |
|
|
771 |
" return int(ceil(len(self.ids) / self.batch_size))\n", |
|
|
772 |
"\n", |
|
|
773 |
" def __getitem__(self, index):\n", |
|
|
774 |
" indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]\n", |
|
|
775 |
" list_IDs_temp = [self.ids[k] for k in indices]\n", |
|
|
776 |
" X = self.__data_generation(list_IDs_temp)\n", |
|
|
777 |
" return X\n", |
|
|
778 |
"\n", |
|
|
779 |
" def on_epoch_end(self):\n", |
|
|
780 |
" self.indices = np.arange(len(self.ids))\n", |
|
|
781 |
"\n", |
|
|
782 |
" def __data_generation(self, list_IDs_temp):\n", |
|
|
783 |
" X = np.empty((self.batch_size, *self.img_size, 3))\n", |
|
|
784 |
" for i, ID in enumerate(list_IDs_temp):\n", |
|
|
785 |
" image = _read(self.img_dir + ID, self.img_size)\n", |
|
|
786 |
" X[i,] = image \n", |
|
|
787 |
" return X" |
|
|
788 |
] |
|
|
789 |
}, |
|
|
790 |
{ |
|
|
791 |
"cell_type": "markdown", |
|
|
792 |
"metadata": {}, |
|
|
793 |
"source": [ |
|
|
794 |
"As we have seen in EDA notebook that we have very few epidural subtypes so we need oversample this sub type" |
|
|
795 |
] |
|
|
796 |
}, |
|
|
797 |
{ |
|
|
798 |
"cell_type": "code", |
|
|
799 |
"execution_count": 20, |
|
|
800 |
"metadata": {}, |
|
|
801 |
"outputs": [ |
|
|
802 |
{ |
|
|
803 |
"name": "stdout", |
|
|
804 |
"output_type": "stream", |
|
|
805 |
"text": [ |
|
|
806 |
"Train Shape: (677018, 6)\n" |
|
|
807 |
] |
|
|
808 |
} |
|
|
809 |
], |
|
|
810 |
"source": [ |
|
|
811 |
"# Oversampling\n", |
|
|
812 |
"epidural_df = train_final_df[train_final_df.epidural == 1]\n", |
|
|
813 |
"train_final_df = pd.concat([train_final_df, epidural_df])\n", |
|
|
814 |
"print('Train Shape: {}'.format(train_final_df.shape))" |
|
|
815 |
] |
|
|
816 |
}, |
|
|
817 |
{ |
|
|
818 |
"cell_type": "code", |
|
|
819 |
"execution_count": 21, |
|
|
820 |
"metadata": {}, |
|
|
821 |
"outputs": [ |
|
|
822 |
{ |
|
|
823 |
"data": { |
|
|
824 |
"text/html": [ |
|
|
825 |
"<div>\n", |
|
|
826 |
"<style scoped>\n", |
|
|
827 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
828 |
" vertical-align: middle;\n", |
|
|
829 |
" }\n", |
|
|
830 |
"\n", |
|
|
831 |
" .dataframe tbody tr th {\n", |
|
|
832 |
" vertical-align: top;\n", |
|
|
833 |
" }\n", |
|
|
834 |
"\n", |
|
|
835 |
" .dataframe thead th {\n", |
|
|
836 |
" text-align: right;\n", |
|
|
837 |
" }\n", |
|
|
838 |
"</style>\n", |
|
|
839 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
840 |
" <thead>\n", |
|
|
841 |
" <tr style=\"text-align: right;\">\n", |
|
|
842 |
" <th></th>\n", |
|
|
843 |
" <th>ID</th>\n", |
|
|
844 |
" <th>Label</th>\n", |
|
|
845 |
" </tr>\n", |
|
|
846 |
" </thead>\n", |
|
|
847 |
" <tbody>\n", |
|
|
848 |
" <tr>\n", |
|
|
849 |
" <th>0</th>\n", |
|
|
850 |
" <td>ID_28fbab7eb_epidural</td>\n", |
|
|
851 |
" <td>0.5</td>\n", |
|
|
852 |
" </tr>\n", |
|
|
853 |
" <tr>\n", |
|
|
854 |
" <th>1</th>\n", |
|
|
855 |
" <td>ID_28fbab7eb_intraparenchymal</td>\n", |
|
|
856 |
" <td>0.5</td>\n", |
|
|
857 |
" </tr>\n", |
|
|
858 |
" <tr>\n", |
|
|
859 |
" <th>2</th>\n", |
|
|
860 |
" <td>ID_28fbab7eb_intraventricular</td>\n", |
|
|
861 |
" <td>0.5</td>\n", |
|
|
862 |
" </tr>\n", |
|
|
863 |
" <tr>\n", |
|
|
864 |
" <th>3</th>\n", |
|
|
865 |
" <td>ID_28fbab7eb_subarachnoid</td>\n", |
|
|
866 |
" <td>0.5</td>\n", |
|
|
867 |
" </tr>\n", |
|
|
868 |
" <tr>\n", |
|
|
869 |
" <th>4</th>\n", |
|
|
870 |
" <td>ID_28fbab7eb_subdural</td>\n", |
|
|
871 |
" <td>0.5</td>\n", |
|
|
872 |
" </tr>\n", |
|
|
873 |
" </tbody>\n", |
|
|
874 |
"</table>\n", |
|
|
875 |
"</div>" |
|
|
876 |
], |
|
|
877 |
"text/plain": [ |
|
|
878 |
" ID Label\n", |
|
|
879 |
"0 ID_28fbab7eb_epidural 0.5\n", |
|
|
880 |
"1 ID_28fbab7eb_intraparenchymal 0.5\n", |
|
|
881 |
"2 ID_28fbab7eb_intraventricular 0.5\n", |
|
|
882 |
"3 ID_28fbab7eb_subarachnoid 0.5\n", |
|
|
883 |
"4 ID_28fbab7eb_subdural 0.5" |
|
|
884 |
] |
|
|
885 |
}, |
|
|
886 |
"execution_count": 21, |
|
|
887 |
"metadata": {}, |
|
|
888 |
"output_type": "execute_result" |
|
|
889 |
} |
|
|
890 |
], |
|
|
891 |
"source": [ |
|
|
892 |
"# load test set\n", |
|
|
893 |
"test_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n", |
|
|
894 |
"test_df.head()" |
|
|
895 |
] |
|
|
896 |
}, |
|
|
897 |
{ |
|
|
898 |
"cell_type": "code", |
|
|
899 |
"execution_count": 22, |
|
|
900 |
"metadata": {}, |
|
|
901 |
"outputs": [ |
|
|
902 |
{ |
|
|
903 |
"data": { |
|
|
904 |
"text/plain": [ |
|
|
905 |
"(78545, 6)" |
|
|
906 |
] |
|
|
907 |
}, |
|
|
908 |
"execution_count": 22, |
|
|
909 |
"metadata": {}, |
|
|
910 |
"output_type": "execute_result" |
|
|
911 |
} |
|
|
912 |
], |
|
|
913 |
"source": [ |
|
|
914 |
"# extract subtype\n", |
|
|
915 |
"test_df['sub_type'] = test_df['ID'].apply(lambda x: x.split('_')[-1])\n", |
|
|
916 |
"# extract filename\n", |
|
|
917 |
"test_df['file_name'] = test_df['ID'].apply(lambda x: '_'.join(x.split('_')[:2]) + '.dcm')\n", |
|
|
918 |
"\n", |
|
|
919 |
"test_df = pd.pivot_table(test_df.drop(columns='ID'), index=\"file_name\", \\\n", |
|
|
920 |
" columns=\"sub_type\", values=\"Label\")\n", |
|
|
921 |
"test_df.head()\n", |
|
|
922 |
"\n", |
|
|
923 |
"test_df.shape" |
|
|
924 |
] |
|
|
925 |
}, |
|
|
926 |
{ |
|
|
927 |
"cell_type": "code", |
|
|
928 |
"execution_count": 23, |
|
|
929 |
"metadata": {}, |
|
|
930 |
"outputs": [ |
|
|
931 |
{ |
|
|
932 |
"data": { |
|
|
933 |
"text/html": [ |
|
|
934 |
"<div>\n", |
|
|
935 |
"<style scoped>\n", |
|
|
936 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
937 |
" vertical-align: middle;\n", |
|
|
938 |
" }\n", |
|
|
939 |
"\n", |
|
|
940 |
" .dataframe tbody tr th {\n", |
|
|
941 |
" vertical-align: top;\n", |
|
|
942 |
" }\n", |
|
|
943 |
"\n", |
|
|
944 |
" .dataframe thead th {\n", |
|
|
945 |
" text-align: right;\n", |
|
|
946 |
" }\n", |
|
|
947 |
"</style>\n", |
|
|
948 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
949 |
" <thead>\n", |
|
|
950 |
" <tr style=\"text-align: right;\">\n", |
|
|
951 |
" <th>sub_type</th>\n", |
|
|
952 |
" <th>any</th>\n", |
|
|
953 |
" <th>epidural</th>\n", |
|
|
954 |
" <th>intraparenchymal</th>\n", |
|
|
955 |
" <th>intraventricular</th>\n", |
|
|
956 |
" <th>subarachnoid</th>\n", |
|
|
957 |
" <th>subdural</th>\n", |
|
|
958 |
" </tr>\n", |
|
|
959 |
" <tr>\n", |
|
|
960 |
" <th>file_name</th>\n", |
|
|
961 |
" <th></th>\n", |
|
|
962 |
" <th></th>\n", |
|
|
963 |
" <th></th>\n", |
|
|
964 |
" <th></th>\n", |
|
|
965 |
" <th></th>\n", |
|
|
966 |
" <th></th>\n", |
|
|
967 |
" </tr>\n", |
|
|
968 |
" </thead>\n", |
|
|
969 |
" <tbody>\n", |
|
|
970 |
" <tr>\n", |
|
|
971 |
" <th>ID_000012eaf.dcm</th>\n", |
|
|
972 |
" <td>0.5</td>\n", |
|
|
973 |
" <td>0.5</td>\n", |
|
|
974 |
" <td>0.5</td>\n", |
|
|
975 |
" <td>0.5</td>\n", |
|
|
976 |
" <td>0.5</td>\n", |
|
|
977 |
" <td>0.5</td>\n", |
|
|
978 |
" </tr>\n", |
|
|
979 |
" <tr>\n", |
|
|
980 |
" <th>ID_0000ca2f6.dcm</th>\n", |
|
|
981 |
" <td>0.5</td>\n", |
|
|
982 |
" <td>0.5</td>\n", |
|
|
983 |
" <td>0.5</td>\n", |
|
|
984 |
" <td>0.5</td>\n", |
|
|
985 |
" <td>0.5</td>\n", |
|
|
986 |
" <td>0.5</td>\n", |
|
|
987 |
" </tr>\n", |
|
|
988 |
" <tr>\n", |
|
|
989 |
" <th>ID_000259ccf.dcm</th>\n", |
|
|
990 |
" <td>0.5</td>\n", |
|
|
991 |
" <td>0.5</td>\n", |
|
|
992 |
" <td>0.5</td>\n", |
|
|
993 |
" <td>0.5</td>\n", |
|
|
994 |
" <td>0.5</td>\n", |
|
|
995 |
" <td>0.5</td>\n", |
|
|
996 |
" </tr>\n", |
|
|
997 |
" <tr>\n", |
|
|
998 |
" <th>ID_0002d438a.dcm</th>\n", |
|
|
999 |
" <td>0.5</td>\n", |
|
|
1000 |
" <td>0.5</td>\n", |
|
|
1001 |
" <td>0.5</td>\n", |
|
|
1002 |
" <td>0.5</td>\n", |
|
|
1003 |
" <td>0.5</td>\n", |
|
|
1004 |
" <td>0.5</td>\n", |
|
|
1005 |
" </tr>\n", |
|
|
1006 |
" <tr>\n", |
|
|
1007 |
" <th>ID_00032d440.dcm</th>\n", |
|
|
1008 |
" <td>0.5</td>\n", |
|
|
1009 |
" <td>0.5</td>\n", |
|
|
1010 |
" <td>0.5</td>\n", |
|
|
1011 |
" <td>0.5</td>\n", |
|
|
1012 |
" <td>0.5</td>\n", |
|
|
1013 |
" <td>0.5</td>\n", |
|
|
1014 |
" </tr>\n", |
|
|
1015 |
" </tbody>\n", |
|
|
1016 |
"</table>\n", |
|
|
1017 |
"</div>" |
|
|
1018 |
], |
|
|
1019 |
"text/plain": [ |
|
|
1020 |
"sub_type any epidural intraparenchymal intraventricular \\\n", |
|
|
1021 |
"file_name \n", |
|
|
1022 |
"ID_000012eaf.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1023 |
"ID_0000ca2f6.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1024 |
"ID_000259ccf.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1025 |
"ID_0002d438a.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1026 |
"ID_00032d440.dcm 0.5 0.5 0.5 0.5 \n", |
|
|
1027 |
"\n", |
|
|
1028 |
"sub_type subarachnoid subdural \n", |
|
|
1029 |
"file_name \n", |
|
|
1030 |
"ID_000012eaf.dcm 0.5 0.5 \n", |
|
|
1031 |
"ID_0000ca2f6.dcm 0.5 0.5 \n", |
|
|
1032 |
"ID_000259ccf.dcm 0.5 0.5 \n", |
|
|
1033 |
"ID_0002d438a.dcm 0.5 0.5 \n", |
|
|
1034 |
"ID_00032d440.dcm 0.5 0.5 " |
|
|
1035 |
] |
|
|
1036 |
}, |
|
|
1037 |
"execution_count": 23, |
|
|
1038 |
"metadata": {}, |
|
|
1039 |
"output_type": "execute_result" |
|
|
1040 |
} |
|
|
1041 |
], |
|
|
1042 |
"source": [ |
|
|
1043 |
"test_df.head()" |
|
|
1044 |
] |
|
|
1045 |
}, |
|
|
1046 |
{ |
|
|
1047 |
"cell_type": "code", |
|
|
1048 |
"execution_count": 24, |
|
|
1049 |
"metadata": {}, |
|
|
1050 |
"outputs": [ |
|
|
1051 |
{ |
|
|
1052 |
"name": "stdout", |
|
|
1053 |
"output_type": "stream", |
|
|
1054 |
"text": [ |
|
|
1055 |
"Downloading data from https://github.com/Callidior/keras-applications/releases/download/efficientnet/efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5\n", |
|
|
1056 |
"16809984/16804768 [==============================] - 1s 0us/step\n", |
|
|
1057 |
"Model: \"model_1\"\n", |
|
|
1058 |
"__________________________________________________________________________________________________\n", |
|
|
1059 |
"Layer (type) Output Shape Param # Connected to \n", |
|
|
1060 |
"==================================================================================================\n", |
|
|
1061 |
"input_1 (InputLayer) (None, 256, 256, 3) 0 \n", |
|
|
1062 |
"__________________________________________________________________________________________________\n", |
|
|
1063 |
"stem_conv (Conv2D) (None, 128, 128, 32) 864 input_1[0][0] \n", |
|
|
1064 |
"__________________________________________________________________________________________________\n", |
|
|
1065 |
"stem_bn (BatchNormalization) (None, 128, 128, 32) 128 stem_conv[0][0] \n", |
|
|
1066 |
"__________________________________________________________________________________________________\n", |
|
|
1067 |
"stem_activation (Activation) (None, 128, 128, 32) 0 stem_bn[0][0] \n", |
|
|
1068 |
"__________________________________________________________________________________________________\n", |
|
|
1069 |
"block1a_dwconv (DepthwiseConv2D (None, 128, 128, 32) 288 stem_activation[0][0] \n", |
|
|
1070 |
"__________________________________________________________________________________________________\n", |
|
|
1071 |
"block1a_bn (BatchNormalization) (None, 128, 128, 32) 128 block1a_dwconv[0][0] \n", |
|
|
1072 |
"__________________________________________________________________________________________________\n", |
|
|
1073 |
"block1a_activation (Activation) (None, 128, 128, 32) 0 block1a_bn[0][0] \n", |
|
|
1074 |
"__________________________________________________________________________________________________\n", |
|
|
1075 |
"block1a_se_squeeze (GlobalAvera (None, 32) 0 block1a_activation[0][0] \n", |
|
|
1076 |
"__________________________________________________________________________________________________\n", |
|
|
1077 |
"block1a_se_reshape (Reshape) (None, 1, 1, 32) 0 block1a_se_squeeze[0][0] \n", |
|
|
1078 |
"__________________________________________________________________________________________________\n", |
|
|
1079 |
"block1a_se_reduce (Conv2D) (None, 1, 1, 8) 264 block1a_se_reshape[0][0] \n", |
|
|
1080 |
"__________________________________________________________________________________________________\n", |
|
|
1081 |
"block1a_se_expand (Conv2D) (None, 1, 1, 32) 288 block1a_se_reduce[0][0] \n", |
|
|
1082 |
"__________________________________________________________________________________________________\n", |
|
|
1083 |
"block1a_se_excite (Multiply) (None, 128, 128, 32) 0 block1a_activation[0][0] \n", |
|
|
1084 |
" block1a_se_expand[0][0] \n", |
|
|
1085 |
"__________________________________________________________________________________________________\n", |
|
|
1086 |
"block1a_project_conv (Conv2D) (None, 128, 128, 16) 512 block1a_se_excite[0][0] \n", |
|
|
1087 |
"__________________________________________________________________________________________________\n", |
|
|
1088 |
"block1a_project_bn (BatchNormal (None, 128, 128, 16) 64 block1a_project_conv[0][0] \n", |
|
|
1089 |
"__________________________________________________________________________________________________\n", |
|
|
1090 |
"block2a_expand_conv (Conv2D) (None, 128, 128, 96) 1536 block1a_project_bn[0][0] \n", |
|
|
1091 |
"__________________________________________________________________________________________________\n", |
|
|
1092 |
"block2a_expand_bn (BatchNormali (None, 128, 128, 96) 384 block2a_expand_conv[0][0] \n", |
|
|
1093 |
"__________________________________________________________________________________________________\n", |
|
|
1094 |
"block2a_expand_activation (Acti (None, 128, 128, 96) 0 block2a_expand_bn[0][0] \n", |
|
|
1095 |
"__________________________________________________________________________________________________\n", |
|
|
1096 |
"block2a_dwconv (DepthwiseConv2D (None, 64, 64, 96) 864 block2a_expand_activation[0][0] \n", |
|
|
1097 |
"__________________________________________________________________________________________________\n", |
|
|
1098 |
"block2a_bn (BatchNormalization) (None, 64, 64, 96) 384 block2a_dwconv[0][0] \n", |
|
|
1099 |
"__________________________________________________________________________________________________\n", |
|
|
1100 |
"block2a_activation (Activation) (None, 64, 64, 96) 0 block2a_bn[0][0] \n", |
|
|
1101 |
"__________________________________________________________________________________________________\n", |
|
|
1102 |
"block2a_se_squeeze (GlobalAvera (None, 96) 0 block2a_activation[0][0] \n", |
|
|
1103 |
"__________________________________________________________________________________________________\n", |
|
|
1104 |
"block2a_se_reshape (Reshape) (None, 1, 1, 96) 0 block2a_se_squeeze[0][0] \n", |
|
|
1105 |
"__________________________________________________________________________________________________\n", |
|
|
1106 |
"block2a_se_reduce (Conv2D) (None, 1, 1, 4) 388 block2a_se_reshape[0][0] \n", |
|
|
1107 |
"__________________________________________________________________________________________________\n", |
|
|
1108 |
"block2a_se_expand (Conv2D) (None, 1, 1, 96) 480 block2a_se_reduce[0][0] \n", |
|
|
1109 |
"__________________________________________________________________________________________________\n", |
|
|
1110 |
"block2a_se_excite (Multiply) (None, 64, 64, 96) 0 block2a_activation[0][0] \n", |
|
|
1111 |
" block2a_se_expand[0][0] \n", |
|
|
1112 |
"__________________________________________________________________________________________________\n", |
|
|
1113 |
"block2a_project_conv (Conv2D) (None, 64, 64, 24) 2304 block2a_se_excite[0][0] \n", |
|
|
1114 |
"__________________________________________________________________________________________________\n", |
|
|
1115 |
"block2a_project_bn (BatchNormal (None, 64, 64, 24) 96 block2a_project_conv[0][0] \n", |
|
|
1116 |
"__________________________________________________________________________________________________\n", |
|
|
1117 |
"block2b_expand_conv (Conv2D) (None, 64, 64, 144) 3456 block2a_project_bn[0][0] \n", |
|
|
1118 |
"__________________________________________________________________________________________________\n", |
|
|
1119 |
"block2b_expand_bn (BatchNormali (None, 64, 64, 144) 576 block2b_expand_conv[0][0] \n", |
|
|
1120 |
"__________________________________________________________________________________________________\n", |
|
|
1121 |
"block2b_expand_activation (Acti (None, 64, 64, 144) 0 block2b_expand_bn[0][0] \n", |
|
|
1122 |
"__________________________________________________________________________________________________\n", |
|
|
1123 |
"block2b_dwconv (DepthwiseConv2D (None, 64, 64, 144) 1296 block2b_expand_activation[0][0] \n", |
|
|
1124 |
"__________________________________________________________________________________________________\n", |
|
|
1125 |
"block2b_bn (BatchNormalization) (None, 64, 64, 144) 576 block2b_dwconv[0][0] \n", |
|
|
1126 |
"__________________________________________________________________________________________________\n", |
|
|
1127 |
"block2b_activation (Activation) (None, 64, 64, 144) 0 block2b_bn[0][0] \n", |
|
|
1128 |
"__________________________________________________________________________________________________\n", |
|
|
1129 |
"block2b_se_squeeze (GlobalAvera (None, 144) 0 block2b_activation[0][0] \n", |
|
|
1130 |
"__________________________________________________________________________________________________\n", |
|
|
1131 |
"block2b_se_reshape (Reshape) (None, 1, 1, 144) 0 block2b_se_squeeze[0][0] \n", |
|
|
1132 |
"__________________________________________________________________________________________________\n", |
|
|
1133 |
"block2b_se_reduce (Conv2D) (None, 1, 1, 6) 870 block2b_se_reshape[0][0] \n", |
|
|
1134 |
"__________________________________________________________________________________________________\n", |
|
|
1135 |
"block2b_se_expand (Conv2D) (None, 1, 1, 144) 1008 block2b_se_reduce[0][0] \n", |
|
|
1136 |
"__________________________________________________________________________________________________\n", |
|
|
1137 |
"block2b_se_excite (Multiply) (None, 64, 64, 144) 0 block2b_activation[0][0] \n", |
|
|
1138 |
" block2b_se_expand[0][0] \n", |
|
|
1139 |
"__________________________________________________________________________________________________\n", |
|
|
1140 |
"block2b_project_conv (Conv2D) (None, 64, 64, 24) 3456 block2b_se_excite[0][0] \n", |
|
|
1141 |
"__________________________________________________________________________________________________\n", |
|
|
1142 |
"block2b_project_bn (BatchNormal (None, 64, 64, 24) 96 block2b_project_conv[0][0] \n", |
|
|
1143 |
"__________________________________________________________________________________________________\n", |
|
|
1144 |
"block2b_drop (FixedDropout) (None, 64, 64, 24) 0 block2b_project_bn[0][0] \n", |
|
|
1145 |
"__________________________________________________________________________________________________\n", |
|
|
1146 |
"block2b_add (Add) (None, 64, 64, 24) 0 block2b_drop[0][0] \n", |
|
|
1147 |
" block2a_project_bn[0][0] \n", |
|
|
1148 |
"__________________________________________________________________________________________________\n", |
|
|
1149 |
"block3a_expand_conv (Conv2D) (None, 64, 64, 144) 3456 block2b_add[0][0] \n", |
|
|
1150 |
"__________________________________________________________________________________________________\n", |
|
|
1151 |
"block3a_expand_bn (BatchNormali (None, 64, 64, 144) 576 block3a_expand_conv[0][0] \n", |
|
|
1152 |
"__________________________________________________________________________________________________\n", |
|
|
1153 |
"block3a_expand_activation (Acti (None, 64, 64, 144) 0 block3a_expand_bn[0][0] \n", |
|
|
1154 |
"__________________________________________________________________________________________________\n", |
|
|
1155 |
"block3a_dwconv (DepthwiseConv2D (None, 32, 32, 144) 3600 block3a_expand_activation[0][0] \n", |
|
|
1156 |
"__________________________________________________________________________________________________\n", |
|
|
1157 |
"block3a_bn (BatchNormalization) (None, 32, 32, 144) 576 block3a_dwconv[0][0] \n", |
|
|
1158 |
"__________________________________________________________________________________________________\n", |
|
|
1159 |
"block3a_activation (Activation) (None, 32, 32, 144) 0 block3a_bn[0][0] \n", |
|
|
1160 |
"__________________________________________________________________________________________________\n", |
|
|
1161 |
"block3a_se_squeeze (GlobalAvera (None, 144) 0 block3a_activation[0][0] \n", |
|
|
1162 |
"__________________________________________________________________________________________________\n", |
|
|
1163 |
"block3a_se_reshape (Reshape) (None, 1, 1, 144) 0 block3a_se_squeeze[0][0] \n", |
|
|
1164 |
"__________________________________________________________________________________________________\n", |
|
|
1165 |
"block3a_se_reduce (Conv2D) (None, 1, 1, 6) 870 block3a_se_reshape[0][0] \n", |
|
|
1166 |
"__________________________________________________________________________________________________\n", |
|
|
1167 |
"block3a_se_expand (Conv2D) (None, 1, 1, 144) 1008 block3a_se_reduce[0][0] \n", |
|
|
1168 |
"__________________________________________________________________________________________________\n", |
|
|
1169 |
"block3a_se_excite (Multiply) (None, 32, 32, 144) 0 block3a_activation[0][0] \n", |
|
|
1170 |
" block3a_se_expand[0][0] \n", |
|
|
1171 |
"__________________________________________________________________________________________________\n", |
|
|
1172 |
"block3a_project_conv (Conv2D) (None, 32, 32, 40) 5760 block3a_se_excite[0][0] \n", |
|
|
1173 |
"__________________________________________________________________________________________________\n", |
|
|
1174 |
"block3a_project_bn (BatchNormal (None, 32, 32, 40) 160 block3a_project_conv[0][0] \n", |
|
|
1175 |
"__________________________________________________________________________________________________\n", |
|
|
1176 |
"block3b_expand_conv (Conv2D) (None, 32, 32, 240) 9600 block3a_project_bn[0][0] \n", |
|
|
1177 |
"__________________________________________________________________________________________________\n", |
|
|
1178 |
"block3b_expand_bn (BatchNormali (None, 32, 32, 240) 960 block3b_expand_conv[0][0] \n", |
|
|
1179 |
"__________________________________________________________________________________________________\n", |
|
|
1180 |
"block3b_expand_activation (Acti (None, 32, 32, 240) 0 block3b_expand_bn[0][0] \n", |
|
|
1181 |
"__________________________________________________________________________________________________\n", |
|
|
1182 |
"block3b_dwconv (DepthwiseConv2D (None, 32, 32, 240) 6000 block3b_expand_activation[0][0] \n", |
|
|
1183 |
"__________________________________________________________________________________________________\n", |
|
|
1184 |
"block3b_bn (BatchNormalization) (None, 32, 32, 240) 960 block3b_dwconv[0][0] \n", |
|
|
1185 |
"__________________________________________________________________________________________________\n", |
|
|
1186 |
"block3b_activation (Activation) (None, 32, 32, 240) 0 block3b_bn[0][0] \n", |
|
|
1187 |
"__________________________________________________________________________________________________\n", |
|
|
1188 |
"block3b_se_squeeze (GlobalAvera (None, 240) 0 block3b_activation[0][0] \n", |
|
|
1189 |
"__________________________________________________________________________________________________\n", |
|
|
1190 |
"block3b_se_reshape (Reshape) (None, 1, 1, 240) 0 block3b_se_squeeze[0][0] \n", |
|
|
1191 |
"__________________________________________________________________________________________________\n", |
|
|
1192 |
"block3b_se_reduce (Conv2D) (None, 1, 1, 10) 2410 block3b_se_reshape[0][0] \n", |
|
|
1193 |
"__________________________________________________________________________________________________\n", |
|
|
1194 |
"block3b_se_expand (Conv2D) (None, 1, 1, 240) 2640 block3b_se_reduce[0][0] \n", |
|
|
1195 |
"__________________________________________________________________________________________________\n", |
|
|
1196 |
"block3b_se_excite (Multiply) (None, 32, 32, 240) 0 block3b_activation[0][0] \n", |
|
|
1197 |
" block3b_se_expand[0][0] \n", |
|
|
1198 |
"__________________________________________________________________________________________________\n", |
|
|
1199 |
"block3b_project_conv (Conv2D) (None, 32, 32, 40) 9600 block3b_se_excite[0][0] \n", |
|
|
1200 |
"__________________________________________________________________________________________________\n", |
|
|
1201 |
"block3b_project_bn (BatchNormal (None, 32, 32, 40) 160 block3b_project_conv[0][0] \n", |
|
|
1202 |
"__________________________________________________________________________________________________\n", |
|
|
1203 |
"block3b_drop (FixedDropout) (None, 32, 32, 40) 0 block3b_project_bn[0][0] \n", |
|
|
1204 |
"__________________________________________________________________________________________________\n", |
|
|
1205 |
"block3b_add (Add) (None, 32, 32, 40) 0 block3b_drop[0][0] \n", |
|
|
1206 |
" block3a_project_bn[0][0] \n", |
|
|
1207 |
"__________________________________________________________________________________________________\n", |
|
|
1208 |
"block4a_expand_conv (Conv2D) (None, 32, 32, 240) 9600 block3b_add[0][0] \n", |
|
|
1209 |
"__________________________________________________________________________________________________\n", |
|
|
1210 |
"block4a_expand_bn (BatchNormali (None, 32, 32, 240) 960 block4a_expand_conv[0][0] \n", |
|
|
1211 |
"__________________________________________________________________________________________________\n", |
|
|
1212 |
"block4a_expand_activation (Acti (None, 32, 32, 240) 0 block4a_expand_bn[0][0] \n", |
|
|
1213 |
"__________________________________________________________________________________________________\n", |
|
|
1214 |
"block4a_dwconv (DepthwiseConv2D (None, 16, 16, 240) 2160 block4a_expand_activation[0][0] \n", |
|
|
1215 |
"__________________________________________________________________________________________________\n", |
|
|
1216 |
"block4a_bn (BatchNormalization) (None, 16, 16, 240) 960 block4a_dwconv[0][0] \n", |
|
|
1217 |
"__________________________________________________________________________________________________\n", |
|
|
1218 |
"block4a_activation (Activation) (None, 16, 16, 240) 0 block4a_bn[0][0] \n", |
|
|
1219 |
"__________________________________________________________________________________________________\n", |
|
|
1220 |
"block4a_se_squeeze (GlobalAvera (None, 240) 0 block4a_activation[0][0] \n", |
|
|
1221 |
"__________________________________________________________________________________________________\n", |
|
|
1222 |
"block4a_se_reshape (Reshape) (None, 1, 1, 240) 0 block4a_se_squeeze[0][0] \n", |
|
|
1223 |
"__________________________________________________________________________________________________\n", |
|
|
1224 |
"block4a_se_reduce (Conv2D) (None, 1, 1, 10) 2410 block4a_se_reshape[0][0] \n", |
|
|
1225 |
"__________________________________________________________________________________________________\n", |
|
|
1226 |
"block4a_se_expand (Conv2D) (None, 1, 1, 240) 2640 block4a_se_reduce[0][0] \n", |
|
|
1227 |
"__________________________________________________________________________________________________\n", |
|
|
1228 |
"block4a_se_excite (Multiply) (None, 16, 16, 240) 0 block4a_activation[0][0] \n", |
|
|
1229 |
" block4a_se_expand[0][0] \n", |
|
|
1230 |
"__________________________________________________________________________________________________\n", |
|
|
1231 |
"block4a_project_conv (Conv2D) (None, 16, 16, 80) 19200 block4a_se_excite[0][0] \n", |
|
|
1232 |
"__________________________________________________________________________________________________\n", |
|
|
1233 |
"block4a_project_bn (BatchNormal (None, 16, 16, 80) 320 block4a_project_conv[0][0] \n", |
|
|
1234 |
"__________________________________________________________________________________________________\n", |
|
|
1235 |
"block4b_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4a_project_bn[0][0] \n", |
|
|
1236 |
"__________________________________________________________________________________________________\n", |
|
|
1237 |
"block4b_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block4b_expand_conv[0][0] \n", |
|
|
1238 |
"__________________________________________________________________________________________________\n", |
|
|
1239 |
"block4b_expand_activation (Acti (None, 16, 16, 480) 0 block4b_expand_bn[0][0] \n", |
|
|
1240 |
"__________________________________________________________________________________________________\n", |
|
|
1241 |
"block4b_dwconv (DepthwiseConv2D (None, 16, 16, 480) 4320 block4b_expand_activation[0][0] \n", |
|
|
1242 |
"__________________________________________________________________________________________________\n", |
|
|
1243 |
"block4b_bn (BatchNormalization) (None, 16, 16, 480) 1920 block4b_dwconv[0][0] \n", |
|
|
1244 |
"__________________________________________________________________________________________________\n", |
|
|
1245 |
"block4b_activation (Activation) (None, 16, 16, 480) 0 block4b_bn[0][0] \n", |
|
|
1246 |
"__________________________________________________________________________________________________\n", |
|
|
1247 |
"block4b_se_squeeze (GlobalAvera (None, 480) 0 block4b_activation[0][0] \n", |
|
|
1248 |
"__________________________________________________________________________________________________\n", |
|
|
1249 |
"block4b_se_reshape (Reshape) (None, 1, 1, 480) 0 block4b_se_squeeze[0][0] \n", |
|
|
1250 |
"__________________________________________________________________________________________________\n", |
|
|
1251 |
"block4b_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block4b_se_reshape[0][0] \n", |
|
|
1252 |
"__________________________________________________________________________________________________\n", |
|
|
1253 |
"block4b_se_expand (Conv2D) (None, 1, 1, 480) 10080 block4b_se_reduce[0][0] \n", |
|
|
1254 |
"__________________________________________________________________________________________________\n", |
|
|
1255 |
"block4b_se_excite (Multiply) (None, 16, 16, 480) 0 block4b_activation[0][0] \n", |
|
|
1256 |
" block4b_se_expand[0][0] \n", |
|
|
1257 |
"__________________________________________________________________________________________________\n", |
|
|
1258 |
"block4b_project_conv (Conv2D) (None, 16, 16, 80) 38400 block4b_se_excite[0][0] \n", |
|
|
1259 |
"__________________________________________________________________________________________________\n", |
|
|
1260 |
"block4b_project_bn (BatchNormal (None, 16, 16, 80) 320 block4b_project_conv[0][0] \n", |
|
|
1261 |
"__________________________________________________________________________________________________\n", |
|
|
1262 |
"block4b_drop (FixedDropout) (None, 16, 16, 80) 0 block4b_project_bn[0][0] \n", |
|
|
1263 |
"__________________________________________________________________________________________________\n", |
|
|
1264 |
"block4b_add (Add) (None, 16, 16, 80) 0 block4b_drop[0][0] \n", |
|
|
1265 |
" block4a_project_bn[0][0] \n", |
|
|
1266 |
"__________________________________________________________________________________________________\n", |
|
|
1267 |
"block4c_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4b_add[0][0] \n", |
|
|
1268 |
"__________________________________________________________________________________________________\n", |
|
|
1269 |
"block4c_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block4c_expand_conv[0][0] \n", |
|
|
1270 |
"__________________________________________________________________________________________________\n", |
|
|
1271 |
"block4c_expand_activation (Acti (None, 16, 16, 480) 0 block4c_expand_bn[0][0] \n", |
|
|
1272 |
"__________________________________________________________________________________________________\n", |
|
|
1273 |
"block4c_dwconv (DepthwiseConv2D (None, 16, 16, 480) 4320 block4c_expand_activation[0][0] \n", |
|
|
1274 |
"__________________________________________________________________________________________________\n", |
|
|
1275 |
"block4c_bn (BatchNormalization) (None, 16, 16, 480) 1920 block4c_dwconv[0][0] \n", |
|
|
1276 |
"__________________________________________________________________________________________________\n", |
|
|
1277 |
"block4c_activation (Activation) (None, 16, 16, 480) 0 block4c_bn[0][0] \n", |
|
|
1278 |
"__________________________________________________________________________________________________\n", |
|
|
1279 |
"block4c_se_squeeze (GlobalAvera (None, 480) 0 block4c_activation[0][0] \n", |
|
|
1280 |
"__________________________________________________________________________________________________\n", |
|
|
1281 |
"block4c_se_reshape (Reshape) (None, 1, 1, 480) 0 block4c_se_squeeze[0][0] \n", |
|
|
1282 |
"__________________________________________________________________________________________________\n", |
|
|
1283 |
"block4c_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block4c_se_reshape[0][0] \n", |
|
|
1284 |
"__________________________________________________________________________________________________\n", |
|
|
1285 |
"block4c_se_expand (Conv2D) (None, 1, 1, 480) 10080 block4c_se_reduce[0][0] \n", |
|
|
1286 |
"__________________________________________________________________________________________________\n", |
|
|
1287 |
"block4c_se_excite (Multiply) (None, 16, 16, 480) 0 block4c_activation[0][0] \n", |
|
|
1288 |
" block4c_se_expand[0][0] \n", |
|
|
1289 |
"__________________________________________________________________________________________________\n", |
|
|
1290 |
"block4c_project_conv (Conv2D) (None, 16, 16, 80) 38400 block4c_se_excite[0][0] \n", |
|
|
1291 |
"__________________________________________________________________________________________________\n", |
|
|
1292 |
"block4c_project_bn (BatchNormal (None, 16, 16, 80) 320 block4c_project_conv[0][0] \n", |
|
|
1293 |
"__________________________________________________________________________________________________\n", |
|
|
1294 |
"block4c_drop (FixedDropout) (None, 16, 16, 80) 0 block4c_project_bn[0][0] \n", |
|
|
1295 |
"__________________________________________________________________________________________________\n", |
|
|
1296 |
"block4c_add (Add) (None, 16, 16, 80) 0 block4c_drop[0][0] \n", |
|
|
1297 |
" block4b_add[0][0] \n", |
|
|
1298 |
"__________________________________________________________________________________________________\n", |
|
|
1299 |
"block5a_expand_conv (Conv2D) (None, 16, 16, 480) 38400 block4c_add[0][0] \n", |
|
|
1300 |
"__________________________________________________________________________________________________\n", |
|
|
1301 |
"block5a_expand_bn (BatchNormali (None, 16, 16, 480) 1920 block5a_expand_conv[0][0] \n", |
|
|
1302 |
"__________________________________________________________________________________________________\n", |
|
|
1303 |
"block5a_expand_activation (Acti (None, 16, 16, 480) 0 block5a_expand_bn[0][0] \n", |
|
|
1304 |
"__________________________________________________________________________________________________\n", |
|
|
1305 |
"block5a_dwconv (DepthwiseConv2D (None, 16, 16, 480) 12000 block5a_expand_activation[0][0] \n", |
|
|
1306 |
"__________________________________________________________________________________________________\n", |
|
|
1307 |
"block5a_bn (BatchNormalization) (None, 16, 16, 480) 1920 block5a_dwconv[0][0] \n", |
|
|
1308 |
"__________________________________________________________________________________________________\n", |
|
|
1309 |
"block5a_activation (Activation) (None, 16, 16, 480) 0 block5a_bn[0][0] \n", |
|
|
1310 |
"__________________________________________________________________________________________________\n", |
|
|
1311 |
"block5a_se_squeeze (GlobalAvera (None, 480) 0 block5a_activation[0][0] \n", |
|
|
1312 |
"__________________________________________________________________________________________________\n", |
|
|
1313 |
"block5a_se_reshape (Reshape) (None, 1, 1, 480) 0 block5a_se_squeeze[0][0] \n", |
|
|
1314 |
"__________________________________________________________________________________________________\n", |
|
|
1315 |
"block5a_se_reduce (Conv2D) (None, 1, 1, 20) 9620 block5a_se_reshape[0][0] \n", |
|
|
1316 |
"__________________________________________________________________________________________________\n", |
|
|
1317 |
"block5a_se_expand (Conv2D) (None, 1, 1, 480) 10080 block5a_se_reduce[0][0] \n", |
|
|
1318 |
"__________________________________________________________________________________________________\n", |
|
|
1319 |
"block5a_se_excite (Multiply) (None, 16, 16, 480) 0 block5a_activation[0][0] \n", |
|
|
1320 |
" block5a_se_expand[0][0] \n", |
|
|
1321 |
"__________________________________________________________________________________________________\n", |
|
|
1322 |
"block5a_project_conv (Conv2D) (None, 16, 16, 112) 53760 block5a_se_excite[0][0] \n", |
|
|
1323 |
"__________________________________________________________________________________________________\n", |
|
|
1324 |
"block5a_project_bn (BatchNormal (None, 16, 16, 112) 448 block5a_project_conv[0][0] \n", |
|
|
1325 |
"__________________________________________________________________________________________________\n", |
|
|
1326 |
"block5b_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5a_project_bn[0][0] \n", |
|
|
1327 |
"__________________________________________________________________________________________________\n", |
|
|
1328 |
"block5b_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5b_expand_conv[0][0] \n", |
|
|
1329 |
"__________________________________________________________________________________________________\n", |
|
|
1330 |
"block5b_expand_activation (Acti (None, 16, 16, 672) 0 block5b_expand_bn[0][0] \n", |
|
|
1331 |
"__________________________________________________________________________________________________\n", |
|
|
1332 |
"block5b_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5b_expand_activation[0][0] \n", |
|
|
1333 |
"__________________________________________________________________________________________________\n", |
|
|
1334 |
"block5b_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5b_dwconv[0][0] \n", |
|
|
1335 |
"__________________________________________________________________________________________________\n", |
|
|
1336 |
"block5b_activation (Activation) (None, 16, 16, 672) 0 block5b_bn[0][0] \n", |
|
|
1337 |
"__________________________________________________________________________________________________\n", |
|
|
1338 |
"block5b_se_squeeze (GlobalAvera (None, 672) 0 block5b_activation[0][0] \n", |
|
|
1339 |
"__________________________________________________________________________________________________\n", |
|
|
1340 |
"block5b_se_reshape (Reshape) (None, 1, 1, 672) 0 block5b_se_squeeze[0][0] \n", |
|
|
1341 |
"__________________________________________________________________________________________________\n", |
|
|
1342 |
"block5b_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5b_se_reshape[0][0] \n", |
|
|
1343 |
"__________________________________________________________________________________________________\n", |
|
|
1344 |
"block5b_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5b_se_reduce[0][0] \n", |
|
|
1345 |
"__________________________________________________________________________________________________\n", |
|
|
1346 |
"block5b_se_excite (Multiply) (None, 16, 16, 672) 0 block5b_activation[0][0] \n", |
|
|
1347 |
" block5b_se_expand[0][0] \n", |
|
|
1348 |
"__________________________________________________________________________________________________\n", |
|
|
1349 |
"block5b_project_conv (Conv2D) (None, 16, 16, 112) 75264 block5b_se_excite[0][0] \n", |
|
|
1350 |
"__________________________________________________________________________________________________\n", |
|
|
1351 |
"block5b_project_bn (BatchNormal (None, 16, 16, 112) 448 block5b_project_conv[0][0] \n", |
|
|
1352 |
"__________________________________________________________________________________________________\n", |
|
|
1353 |
"block5b_drop (FixedDropout) (None, 16, 16, 112) 0 block5b_project_bn[0][0] \n", |
|
|
1354 |
"__________________________________________________________________________________________________\n", |
|
|
1355 |
"block5b_add (Add) (None, 16, 16, 112) 0 block5b_drop[0][0] \n", |
|
|
1356 |
" block5a_project_bn[0][0] \n", |
|
|
1357 |
"__________________________________________________________________________________________________\n", |
|
|
1358 |
"block5c_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5b_add[0][0] \n", |
|
|
1359 |
"__________________________________________________________________________________________________\n", |
|
|
1360 |
"block5c_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block5c_expand_conv[0][0] \n", |
|
|
1361 |
"__________________________________________________________________________________________________\n", |
|
|
1362 |
"block5c_expand_activation (Acti (None, 16, 16, 672) 0 block5c_expand_bn[0][0] \n", |
|
|
1363 |
"__________________________________________________________________________________________________\n", |
|
|
1364 |
"block5c_dwconv (DepthwiseConv2D (None, 16, 16, 672) 16800 block5c_expand_activation[0][0] \n", |
|
|
1365 |
"__________________________________________________________________________________________________\n", |
|
|
1366 |
"block5c_bn (BatchNormalization) (None, 16, 16, 672) 2688 block5c_dwconv[0][0] \n", |
|
|
1367 |
"__________________________________________________________________________________________________\n", |
|
|
1368 |
"block5c_activation (Activation) (None, 16, 16, 672) 0 block5c_bn[0][0] \n", |
|
|
1369 |
"__________________________________________________________________________________________________\n", |
|
|
1370 |
"block5c_se_squeeze (GlobalAvera (None, 672) 0 block5c_activation[0][0] \n", |
|
|
1371 |
"__________________________________________________________________________________________________\n", |
|
|
1372 |
"block5c_se_reshape (Reshape) (None, 1, 1, 672) 0 block5c_se_squeeze[0][0] \n", |
|
|
1373 |
"__________________________________________________________________________________________________\n", |
|
|
1374 |
"block5c_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block5c_se_reshape[0][0] \n", |
|
|
1375 |
"__________________________________________________________________________________________________\n", |
|
|
1376 |
"block5c_se_expand (Conv2D) (None, 1, 1, 672) 19488 block5c_se_reduce[0][0] \n", |
|
|
1377 |
"__________________________________________________________________________________________________\n", |
|
|
1378 |
"block5c_se_excite (Multiply) (None, 16, 16, 672) 0 block5c_activation[0][0] \n", |
|
|
1379 |
" block5c_se_expand[0][0] \n", |
|
|
1380 |
"__________________________________________________________________________________________________\n", |
|
|
1381 |
"block5c_project_conv (Conv2D) (None, 16, 16, 112) 75264 block5c_se_excite[0][0] \n", |
|
|
1382 |
"__________________________________________________________________________________________________\n", |
|
|
1383 |
"block5c_project_bn (BatchNormal (None, 16, 16, 112) 448 block5c_project_conv[0][0] \n", |
|
|
1384 |
"__________________________________________________________________________________________________\n", |
|
|
1385 |
"block5c_drop (FixedDropout) (None, 16, 16, 112) 0 block5c_project_bn[0][0] \n", |
|
|
1386 |
"__________________________________________________________________________________________________\n", |
|
|
1387 |
"block5c_add (Add) (None, 16, 16, 112) 0 block5c_drop[0][0] \n", |
|
|
1388 |
" block5b_add[0][0] \n", |
|
|
1389 |
"__________________________________________________________________________________________________\n", |
|
|
1390 |
"block6a_expand_conv (Conv2D) (None, 16, 16, 672) 75264 block5c_add[0][0] \n", |
|
|
1391 |
"__________________________________________________________________________________________________\n", |
|
|
1392 |
"block6a_expand_bn (BatchNormali (None, 16, 16, 672) 2688 block6a_expand_conv[0][0] \n", |
|
|
1393 |
"__________________________________________________________________________________________________\n", |
|
|
1394 |
"block6a_expand_activation (Acti (None, 16, 16, 672) 0 block6a_expand_bn[0][0] \n", |
|
|
1395 |
"__________________________________________________________________________________________________\n", |
|
|
1396 |
"block6a_dwconv (DepthwiseConv2D (None, 8, 8, 672) 16800 block6a_expand_activation[0][0] \n", |
|
|
1397 |
"__________________________________________________________________________________________________\n", |
|
|
1398 |
"block6a_bn (BatchNormalization) (None, 8, 8, 672) 2688 block6a_dwconv[0][0] \n", |
|
|
1399 |
"__________________________________________________________________________________________________\n", |
|
|
1400 |
"block6a_activation (Activation) (None, 8, 8, 672) 0 block6a_bn[0][0] \n", |
|
|
1401 |
"__________________________________________________________________________________________________\n", |
|
|
1402 |
"block6a_se_squeeze (GlobalAvera (None, 672) 0 block6a_activation[0][0] \n", |
|
|
1403 |
"__________________________________________________________________________________________________\n", |
|
|
1404 |
"block6a_se_reshape (Reshape) (None, 1, 1, 672) 0 block6a_se_squeeze[0][0] \n", |
|
|
1405 |
"__________________________________________________________________________________________________\n", |
|
|
1406 |
"block6a_se_reduce (Conv2D) (None, 1, 1, 28) 18844 block6a_se_reshape[0][0] \n", |
|
|
1407 |
"__________________________________________________________________________________________________\n", |
|
|
1408 |
"block6a_se_expand (Conv2D) (None, 1, 1, 672) 19488 block6a_se_reduce[0][0] \n", |
|
|
1409 |
"__________________________________________________________________________________________________\n", |
|
|
1410 |
"block6a_se_excite (Multiply) (None, 8, 8, 672) 0 block6a_activation[0][0] \n", |
|
|
1411 |
" block6a_se_expand[0][0] \n", |
|
|
1412 |
"__________________________________________________________________________________________________\n", |
|
|
1413 |
"block6a_project_conv (Conv2D) (None, 8, 8, 192) 129024 block6a_se_excite[0][0] \n", |
|
|
1414 |
"__________________________________________________________________________________________________\n", |
|
|
1415 |
"block6a_project_bn (BatchNormal (None, 8, 8, 192) 768 block6a_project_conv[0][0] \n", |
|
|
1416 |
"__________________________________________________________________________________________________\n", |
|
|
1417 |
"block6b_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6a_project_bn[0][0] \n", |
|
|
1418 |
"__________________________________________________________________________________________________\n", |
|
|
1419 |
"block6b_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6b_expand_conv[0][0] \n", |
|
|
1420 |
"__________________________________________________________________________________________________\n", |
|
|
1421 |
"block6b_expand_activation (Acti (None, 8, 8, 1152) 0 block6b_expand_bn[0][0] \n", |
|
|
1422 |
"__________________________________________________________________________________________________\n", |
|
|
1423 |
"block6b_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6b_expand_activation[0][0] \n", |
|
|
1424 |
"__________________________________________________________________________________________________\n", |
|
|
1425 |
"block6b_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6b_dwconv[0][0] \n", |
|
|
1426 |
"__________________________________________________________________________________________________\n", |
|
|
1427 |
"block6b_activation (Activation) (None, 8, 8, 1152) 0 block6b_bn[0][0] \n", |
|
|
1428 |
"__________________________________________________________________________________________________\n", |
|
|
1429 |
"block6b_se_squeeze (GlobalAvera (None, 1152) 0 block6b_activation[0][0] \n", |
|
|
1430 |
"__________________________________________________________________________________________________\n", |
|
|
1431 |
"block6b_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6b_se_squeeze[0][0] \n", |
|
|
1432 |
"__________________________________________________________________________________________________\n", |
|
|
1433 |
"block6b_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6b_se_reshape[0][0] \n", |
|
|
1434 |
"__________________________________________________________________________________________________\n", |
|
|
1435 |
"block6b_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6b_se_reduce[0][0] \n", |
|
|
1436 |
"__________________________________________________________________________________________________\n", |
|
|
1437 |
"block6b_se_excite (Multiply) (None, 8, 8, 1152) 0 block6b_activation[0][0] \n", |
|
|
1438 |
" block6b_se_expand[0][0] \n", |
|
|
1439 |
"__________________________________________________________________________________________________\n", |
|
|
1440 |
"block6b_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6b_se_excite[0][0] \n", |
|
|
1441 |
"__________________________________________________________________________________________________\n", |
|
|
1442 |
"block6b_project_bn (BatchNormal (None, 8, 8, 192) 768 block6b_project_conv[0][0] \n", |
|
|
1443 |
"__________________________________________________________________________________________________\n", |
|
|
1444 |
"block6b_drop (FixedDropout) (None, 8, 8, 192) 0 block6b_project_bn[0][0] \n", |
|
|
1445 |
"__________________________________________________________________________________________________\n", |
|
|
1446 |
"block6b_add (Add) (None, 8, 8, 192) 0 block6b_drop[0][0] \n", |
|
|
1447 |
" block6a_project_bn[0][0] \n", |
|
|
1448 |
"__________________________________________________________________________________________________\n", |
|
|
1449 |
"block6c_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6b_add[0][0] \n", |
|
|
1450 |
"__________________________________________________________________________________________________\n", |
|
|
1451 |
"block6c_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6c_expand_conv[0][0] \n", |
|
|
1452 |
"__________________________________________________________________________________________________\n", |
|
|
1453 |
"block6c_expand_activation (Acti (None, 8, 8, 1152) 0 block6c_expand_bn[0][0] \n", |
|
|
1454 |
"__________________________________________________________________________________________________\n", |
|
|
1455 |
"block6c_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6c_expand_activation[0][0] \n", |
|
|
1456 |
"__________________________________________________________________________________________________\n", |
|
|
1457 |
"block6c_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6c_dwconv[0][0] \n", |
|
|
1458 |
"__________________________________________________________________________________________________\n", |
|
|
1459 |
"block6c_activation (Activation) (None, 8, 8, 1152) 0 block6c_bn[0][0] \n", |
|
|
1460 |
"__________________________________________________________________________________________________\n", |
|
|
1461 |
"block6c_se_squeeze (GlobalAvera (None, 1152) 0 block6c_activation[0][0] \n", |
|
|
1462 |
"__________________________________________________________________________________________________\n", |
|
|
1463 |
"block6c_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6c_se_squeeze[0][0] \n", |
|
|
1464 |
"__________________________________________________________________________________________________\n", |
|
|
1465 |
"block6c_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6c_se_reshape[0][0] \n", |
|
|
1466 |
"__________________________________________________________________________________________________\n", |
|
|
1467 |
"block6c_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6c_se_reduce[0][0] \n", |
|
|
1468 |
"__________________________________________________________________________________________________\n", |
|
|
1469 |
"block6c_se_excite (Multiply) (None, 8, 8, 1152) 0 block6c_activation[0][0] \n", |
|
|
1470 |
" block6c_se_expand[0][0] \n", |
|
|
1471 |
"__________________________________________________________________________________________________\n", |
|
|
1472 |
"block6c_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6c_se_excite[0][0] \n", |
|
|
1473 |
"__________________________________________________________________________________________________\n", |
|
|
1474 |
"block6c_project_bn (BatchNormal (None, 8, 8, 192) 768 block6c_project_conv[0][0] \n", |
|
|
1475 |
"__________________________________________________________________________________________________\n", |
|
|
1476 |
"block6c_drop (FixedDropout) (None, 8, 8, 192) 0 block6c_project_bn[0][0] \n", |
|
|
1477 |
"__________________________________________________________________________________________________\n", |
|
|
1478 |
"block6c_add (Add) (None, 8, 8, 192) 0 block6c_drop[0][0] \n", |
|
|
1479 |
" block6b_add[0][0] \n", |
|
|
1480 |
"__________________________________________________________________________________________________\n", |
|
|
1481 |
"block6d_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6c_add[0][0] \n", |
|
|
1482 |
"__________________________________________________________________________________________________\n", |
|
|
1483 |
"block6d_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block6d_expand_conv[0][0] \n", |
|
|
1484 |
"__________________________________________________________________________________________________\n", |
|
|
1485 |
"block6d_expand_activation (Acti (None, 8, 8, 1152) 0 block6d_expand_bn[0][0] \n", |
|
|
1486 |
"__________________________________________________________________________________________________\n", |
|
|
1487 |
"block6d_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 28800 block6d_expand_activation[0][0] \n", |
|
|
1488 |
"__________________________________________________________________________________________________\n", |
|
|
1489 |
"block6d_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block6d_dwconv[0][0] \n", |
|
|
1490 |
"__________________________________________________________________________________________________\n", |
|
|
1491 |
"block6d_activation (Activation) (None, 8, 8, 1152) 0 block6d_bn[0][0] \n", |
|
|
1492 |
"__________________________________________________________________________________________________\n", |
|
|
1493 |
"block6d_se_squeeze (GlobalAvera (None, 1152) 0 block6d_activation[0][0] \n", |
|
|
1494 |
"__________________________________________________________________________________________________\n", |
|
|
1495 |
"block6d_se_reshape (Reshape) (None, 1, 1, 1152) 0 block6d_se_squeeze[0][0] \n", |
|
|
1496 |
"__________________________________________________________________________________________________\n", |
|
|
1497 |
"block6d_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block6d_se_reshape[0][0] \n", |
|
|
1498 |
"__________________________________________________________________________________________________\n", |
|
|
1499 |
"block6d_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block6d_se_reduce[0][0] \n", |
|
|
1500 |
"__________________________________________________________________________________________________\n", |
|
|
1501 |
"block6d_se_excite (Multiply) (None, 8, 8, 1152) 0 block6d_activation[0][0] \n", |
|
|
1502 |
" block6d_se_expand[0][0] \n", |
|
|
1503 |
"__________________________________________________________________________________________________\n", |
|
|
1504 |
"block6d_project_conv (Conv2D) (None, 8, 8, 192) 221184 block6d_se_excite[0][0] \n", |
|
|
1505 |
"__________________________________________________________________________________________________\n", |
|
|
1506 |
"block6d_project_bn (BatchNormal (None, 8, 8, 192) 768 block6d_project_conv[0][0] \n", |
|
|
1507 |
"__________________________________________________________________________________________________\n", |
|
|
1508 |
"block6d_drop (FixedDropout) (None, 8, 8, 192) 0 block6d_project_bn[0][0] \n", |
|
|
1509 |
"__________________________________________________________________________________________________\n", |
|
|
1510 |
"block6d_add (Add) (None, 8, 8, 192) 0 block6d_drop[0][0] \n", |
|
|
1511 |
" block6c_add[0][0] \n", |
|
|
1512 |
"__________________________________________________________________________________________________\n", |
|
|
1513 |
"block7a_expand_conv (Conv2D) (None, 8, 8, 1152) 221184 block6d_add[0][0] \n", |
|
|
1514 |
"__________________________________________________________________________________________________\n", |
|
|
1515 |
"block7a_expand_bn (BatchNormali (None, 8, 8, 1152) 4608 block7a_expand_conv[0][0] \n", |
|
|
1516 |
"__________________________________________________________________________________________________\n", |
|
|
1517 |
"block7a_expand_activation (Acti (None, 8, 8, 1152) 0 block7a_expand_bn[0][0] \n", |
|
|
1518 |
"__________________________________________________________________________________________________\n", |
|
|
1519 |
"block7a_dwconv (DepthwiseConv2D (None, 8, 8, 1152) 10368 block7a_expand_activation[0][0] \n", |
|
|
1520 |
"__________________________________________________________________________________________________\n", |
|
|
1521 |
"block7a_bn (BatchNormalization) (None, 8, 8, 1152) 4608 block7a_dwconv[0][0] \n", |
|
|
1522 |
"__________________________________________________________________________________________________\n", |
|
|
1523 |
"block7a_activation (Activation) (None, 8, 8, 1152) 0 block7a_bn[0][0] \n", |
|
|
1524 |
"__________________________________________________________________________________________________\n", |
|
|
1525 |
"block7a_se_squeeze (GlobalAvera (None, 1152) 0 block7a_activation[0][0] \n", |
|
|
1526 |
"__________________________________________________________________________________________________\n", |
|
|
1527 |
"block7a_se_reshape (Reshape) (None, 1, 1, 1152) 0 block7a_se_squeeze[0][0] \n", |
|
|
1528 |
"__________________________________________________________________________________________________\n", |
|
|
1529 |
"block7a_se_reduce (Conv2D) (None, 1, 1, 48) 55344 block7a_se_reshape[0][0] \n", |
|
|
1530 |
"__________________________________________________________________________________________________\n", |
|
|
1531 |
"block7a_se_expand (Conv2D) (None, 1, 1, 1152) 56448 block7a_se_reduce[0][0] \n", |
|
|
1532 |
"__________________________________________________________________________________________________\n", |
|
|
1533 |
"block7a_se_excite (Multiply) (None, 8, 8, 1152) 0 block7a_activation[0][0] \n", |
|
|
1534 |
" block7a_se_expand[0][0] \n", |
|
|
1535 |
"__________________________________________________________________________________________________\n", |
|
|
1536 |
"block7a_project_conv (Conv2D) (None, 8, 8, 320) 368640 block7a_se_excite[0][0] \n", |
|
|
1537 |
"__________________________________________________________________________________________________\n", |
|
|
1538 |
"block7a_project_bn (BatchNormal (None, 8, 8, 320) 1280 block7a_project_conv[0][0] \n", |
|
|
1539 |
"__________________________________________________________________________________________________\n", |
|
|
1540 |
"top_conv (Conv2D) (None, 8, 8, 1280) 409600 block7a_project_bn[0][0] \n", |
|
|
1541 |
"__________________________________________________________________________________________________\n", |
|
|
1542 |
"top_bn (BatchNormalization) (None, 8, 8, 1280) 5120 top_conv[0][0] \n", |
|
|
1543 |
"__________________________________________________________________________________________________\n", |
|
|
1544 |
"top_activation (Activation) (None, 8, 8, 1280) 0 top_bn[0][0] \n", |
|
|
1545 |
"__________________________________________________________________________________________________\n", |
|
|
1546 |
"avg_pool (GlobalAveragePooling2 (None, 1280) 0 top_activation[0][0] \n", |
|
|
1547 |
"__________________________________________________________________________________________________\n", |
|
|
1548 |
"dropout_1 (Dropout) (None, 1280) 0 avg_pool[0][0] \n", |
|
|
1549 |
"__________________________________________________________________________________________________\n", |
|
|
1550 |
"dense_1 (Dense) (None, 6) 7686 dropout_1[0][0] \n", |
|
|
1551 |
"==================================================================================================\n", |
|
|
1552 |
"Total params: 4,057,250\n", |
|
|
1553 |
"Trainable params: 4,015,234\n", |
|
|
1554 |
"Non-trainable params: 42,016\n", |
|
|
1555 |
"__________________________________________________________________________________________________\n" |
|
|
1556 |
] |
|
|
1557 |
} |
|
|
1558 |
], |
|
|
1559 |
"source": [ |
|
|
1560 |
"base_model = efn.EfficientNetB0(weights = 'imagenet', include_top = False, \\\n", |
|
|
1561 |
" pooling = 'avg', input_shape = (HEIGHT, WIDTH, 3))\n", |
|
|
1562 |
"x = base_model.output\n", |
|
|
1563 |
"x = Dropout(0.125)(x)\n", |
|
|
1564 |
"output_layer = Dense(6, activation = 'sigmoid')(x)\n", |
|
|
1565 |
"model = Model(inputs=base_model.input, outputs=output_layer)\n", |
|
|
1566 |
"model.compile(optimizer = Adam(learning_rate = 0.0001), \n", |
|
|
1567 |
" loss = 'binary_crossentropy',\n", |
|
|
1568 |
" metrics = ['acc', tf.keras.metrics.AUC()])\n", |
|
|
1569 |
"model.summary()" |
|
|
1570 |
] |
|
|
1571 |
}, |
|
|
1572 |
{ |
|
|
1573 |
"cell_type": "code", |
|
|
1574 |
"execution_count": 25, |
|
|
1575 |
"metadata": {}, |
|
|
1576 |
"outputs": [ |
|
|
1577 |
{ |
|
|
1578 |
"data": { |
|
|
1579 |
"text/plain": [ |
|
|
1580 |
"(636396, 40622)" |
|
|
1581 |
] |
|
|
1582 |
}, |
|
|
1583 |
"execution_count": 25, |
|
|
1584 |
"metadata": {}, |
|
|
1585 |
"output_type": "execute_result" |
|
|
1586 |
} |
|
|
1587 |
], |
|
|
1588 |
"source": [ |
|
|
1589 |
"# https://github.com/trent-b/iterative-stratification\n", |
|
|
1590 |
"# Mutlilabel stratification\n", |
|
|
1591 |
"splits = MultilabelStratifiedShuffleSplit(n_splits = 2, test_size = TEST_SIZE, random_state = SEED)\n", |
|
|
1592 |
"file_names = train_final_df.index\n", |
|
|
1593 |
"labels = train_final_df.values\n", |
|
|
1594 |
"# Lets take only the first split\n", |
|
|
1595 |
"split = next(splits.split(file_names, labels))\n", |
|
|
1596 |
"train_idx = split[0]\n", |
|
|
1597 |
"valid_idx = split[1]\n", |
|
|
1598 |
"submission_predictions = []\n", |
|
|
1599 |
"len(train_idx), len(valid_idx)" |
|
|
1600 |
] |
|
|
1601 |
}, |
|
|
1602 |
{ |
|
|
1603 |
"cell_type": "code", |
|
|
1604 |
"execution_count": 26, |
|
|
1605 |
"metadata": {}, |
|
|
1606 |
"outputs": [], |
|
|
1607 |
"source": [ |
|
|
1608 |
"# train data generator\n", |
|
|
1609 |
"data_generator_train = TrainDataGenerator(train_final_df.iloc[train_idx], \n", |
|
|
1610 |
" train_final_df.iloc[train_idx], \n", |
|
|
1611 |
" TRAIN_BATCH_SIZE, \n", |
|
|
1612 |
" (WIDTH, HEIGHT),\n", |
|
|
1613 |
" augment = True)\n", |
|
|
1614 |
"\n", |
|
|
1615 |
"# validation data generator\n", |
|
|
1616 |
"data_generator_val = TrainDataGenerator(train_final_df.iloc[valid_idx], \n", |
|
|
1617 |
" train_final_df.iloc[valid_idx], \n", |
|
|
1618 |
" VALID_BATCH_SIZE, \n", |
|
|
1619 |
" (WIDTH, HEIGHT),\n", |
|
|
1620 |
" augment = False)" |
|
|
1621 |
] |
|
|
1622 |
}, |
|
|
1623 |
{ |
|
|
1624 |
"cell_type": "code", |
|
|
1625 |
"execution_count": 27, |
|
|
1626 |
"metadata": {}, |
|
|
1627 |
"outputs": [ |
|
|
1628 |
{ |
|
|
1629 |
"data": { |
|
|
1630 |
"text/plain": [ |
|
|
1631 |
"(19888, 635)" |
|
|
1632 |
] |
|
|
1633 |
}, |
|
|
1634 |
"execution_count": 27, |
|
|
1635 |
"metadata": {}, |
|
|
1636 |
"output_type": "execute_result" |
|
|
1637 |
} |
|
|
1638 |
], |
|
|
1639 |
"source": [ |
|
|
1640 |
"len(data_generator_train), len(data_generator_val)" |
|
|
1641 |
] |
|
|
1642 |
}, |
|
|
1643 |
{ |
|
|
1644 |
"cell_type": "markdown", |
|
|
1645 |
"metadata": {}, |
|
|
1646 |
"source": [ |
|
|
1647 |
"Competition evaluation metric is evaluated based on weighted log loss but we haven't given weights for each subtype but as per discussion from this thread https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/discussion/109526#latest-630190 any has a wieght of 2 than other types below sample is taken from the discussion threas" |
|
|
1648 |
] |
|
|
1649 |
}, |
|
|
1650 |
{ |
|
|
1651 |
"cell_type": "code", |
|
|
1652 |
"execution_count": 28, |
|
|
1653 |
"metadata": {}, |
|
|
1654 |
"outputs": [], |
|
|
1655 |
"source": [ |
|
|
1656 |
"from keras import backend as K\n", |
|
|
1657 |
"\n", |
|
|
1658 |
"def weighted_log_loss(y_true, y_pred):\n", |
|
|
1659 |
" \"\"\"\n", |
|
|
1660 |
" Can be used as the loss function in model.compile()\n", |
|
|
1661 |
" ---------------------------------------------------\n", |
|
|
1662 |
" \"\"\"\n", |
|
|
1663 |
" \n", |
|
|
1664 |
" class_weights = np.array([2., 1., 1., 1., 1., 1.])\n", |
|
|
1665 |
" \n", |
|
|
1666 |
" eps = K.epsilon()\n", |
|
|
1667 |
" \n", |
|
|
1668 |
" y_pred = K.clip(y_pred, eps, 1.0-eps)\n", |
|
|
1669 |
"\n", |
|
|
1670 |
" out = -( y_true * K.log( y_pred) * class_weights\n", |
|
|
1671 |
" + (1.0 - y_true) * K.log(1.0 - y_pred) * class_weights)\n", |
|
|
1672 |
" \n", |
|
|
1673 |
" return K.mean(out, axis=-1)\n", |
|
|
1674 |
"\n", |
|
|
1675 |
"\n", |
|
|
1676 |
"def _normalized_weighted_average(arr, weights=None):\n", |
|
|
1677 |
" \"\"\"\n", |
|
|
1678 |
" A simple Keras implementation that mimics that of \n", |
|
|
1679 |
" numpy.average(), specifically for this competition\n", |
|
|
1680 |
" \"\"\"\n", |
|
|
1681 |
" \n", |
|
|
1682 |
" if weights is not None:\n", |
|
|
1683 |
" scl = K.sum(weights)\n", |
|
|
1684 |
" weights = K.expand_dims(weights, axis=1)\n", |
|
|
1685 |
" return K.sum(K.dot(arr, weights), axis=1) / scl\n", |
|
|
1686 |
" return K.mean(arr, axis=1)\n", |
|
|
1687 |
"\n", |
|
|
1688 |
"\n", |
|
|
1689 |
"def weighted_loss(y_true, y_pred):\n", |
|
|
1690 |
" \"\"\"\n", |
|
|
1691 |
" Will be used as the metric in model.compile()\n", |
|
|
1692 |
" ---------------------------------------------\n", |
|
|
1693 |
" \n", |
|
|
1694 |
" Similar to the custom loss function 'weighted_log_loss()' above\n", |
|
|
1695 |
" but with normalized weights, which should be very similar \n", |
|
|
1696 |
" to the official competition metric:\n", |
|
|
1697 |
" https://www.kaggle.com/kambarakun/lb-probe-weights-n-of-positives-scoring\n", |
|
|
1698 |
" and hence:\n", |
|
|
1699 |
" sklearn.metrics.log_loss with sample weights\n", |
|
|
1700 |
" \"\"\"\n", |
|
|
1701 |
" \n", |
|
|
1702 |
" class_weights = K.variable([2., 1., 1., 1., 1., 1.])\n", |
|
|
1703 |
" \n", |
|
|
1704 |
" eps = K.epsilon()\n", |
|
|
1705 |
" \n", |
|
|
1706 |
" y_pred = K.clip(y_pred, eps, 1.0-eps)\n", |
|
|
1707 |
"\n", |
|
|
1708 |
" loss = -( y_true * K.log( y_pred)\n", |
|
|
1709 |
" + (1.0 - y_true) * K.log(1.0 - y_pred))\n", |
|
|
1710 |
" \n", |
|
|
1711 |
" loss_samples = _normalized_weighted_average(loss, class_weights)\n", |
|
|
1712 |
" \n", |
|
|
1713 |
" return K.mean(loss_samples)\n", |
|
|
1714 |
"\n", |
|
|
1715 |
"\n", |
|
|
1716 |
"def weighted_log_loss_metric(trues, preds):\n", |
|
|
1717 |
" \"\"\"\n", |
|
|
1718 |
" Will be used to calculate the log loss \n", |
|
|
1719 |
" of the validation set in PredictionCheckpoint()\n", |
|
|
1720 |
" ------------------------------------------\n", |
|
|
1721 |
" \"\"\"\n", |
|
|
1722 |
" class_weights = [2., 1., 1., 1., 1., 1.]\n", |
|
|
1723 |
" \n", |
|
|
1724 |
" epsilon = 1e-7\n", |
|
|
1725 |
" \n", |
|
|
1726 |
" preds = np.clip(preds, epsilon, 1-epsilon)\n", |
|
|
1727 |
" loss = trues * np.log(preds) + (1 - trues) * np.log(1 - preds)\n", |
|
|
1728 |
" loss_samples = np.average(loss, axis=1, weights=class_weights)\n", |
|
|
1729 |
"\n", |
|
|
1730 |
" return - loss_samples.mean()" |
|
|
1731 |
] |
|
|
1732 |
}, |
|
|
1733 |
{ |
|
|
1734 |
"cell_type": "code", |
|
|
1735 |
"execution_count": 29, |
|
|
1736 |
"metadata": {}, |
|
|
1737 |
"outputs": [], |
|
|
1738 |
"source": [ |
|
|
1739 |
"filepath=\"model.h5\"\n", |
|
|
1740 |
"checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, \\\n", |
|
|
1741 |
" save_best_only=True, mode='min')\n", |
|
|
1742 |
"\n", |
|
|
1743 |
"callbacks_list = [checkpoint]" |
|
|
1744 |
] |
|
|
1745 |
}, |
|
|
1746 |
{ |
|
|
1747 |
"cell_type": "markdown", |
|
|
1748 |
"metadata": {}, |
|
|
1749 |
"source": [ |
|
|
1750 |
"For a single epoch we are going to train only last 5 layers of Efficient. Since we have a large number of images around 600k so its better to train the all the layers on the whole train dataset but due its high computation resources required to train we only goin to train last five layers on whole dataset and for rest of epochs we only train on a sample of dataset but will train all the layers." |
|
|
1751 |
] |
|
|
1752 |
}, |
|
|
1753 |
{ |
|
|
1754 |
"cell_type": "code", |
|
|
1755 |
"execution_count": 30, |
|
|
1756 |
"metadata": {}, |
|
|
1757 |
"outputs": [ |
|
|
1758 |
{ |
|
|
1759 |
"data": { |
|
|
1760 |
"text/plain": [ |
|
|
1761 |
"False" |
|
|
1762 |
] |
|
|
1763 |
}, |
|
|
1764 |
"execution_count": 30, |
|
|
1765 |
"metadata": {}, |
|
|
1766 |
"output_type": "execute_result" |
|
|
1767 |
} |
|
|
1768 |
], |
|
|
1769 |
"source": [ |
|
|
1770 |
"os.path.isfile('../input/orginal-087-eff/model.h5')" |
|
|
1771 |
] |
|
|
1772 |
}, |
|
|
1773 |
{ |
|
|
1774 |
"cell_type": "code", |
|
|
1775 |
"execution_count": 32, |
|
|
1776 |
"metadata": {}, |
|
|
1777 |
"outputs": [], |
|
|
1778 |
"source": [ |
|
|
1779 |
"train=False\n", |
|
|
1780 |
"\n", |
|
|
1781 |
"if train:\n", |
|
|
1782 |
" if not os.path.isfile('../input/orginal-087-eff/model.h5'):\n", |
|
|
1783 |
" for layer in model.layers[:-5]:\n", |
|
|
1784 |
" layer.trainable = False\n", |
|
|
1785 |
" model.compile(optimizer = Adam(learning_rate = 0.0001), \n", |
|
|
1786 |
" loss = 'binary_crossentropy',\n", |
|
|
1787 |
" metrics = ['acc'])\n", |
|
|
1788 |
"\n", |
|
|
1789 |
" model.fit_generator(generator = data_generator_train,\n", |
|
|
1790 |
" validation_data = data_generator_val,\n", |
|
|
1791 |
" epochs = 1,\n", |
|
|
1792 |
" callbacks = callbacks_list,\n", |
|
|
1793 |
" verbose = 1)" |
|
|
1794 |
] |
|
|
1795 |
}, |
|
|
1796 |
{ |
|
|
1797 |
"cell_type": "code", |
|
|
1798 |
"execution_count": 33, |
|
|
1799 |
"metadata": {}, |
|
|
1800 |
"outputs": [], |
|
|
1801 |
"source": [ |
|
|
1802 |
"if train:\n", |
|
|
1803 |
" for base_layer in model.layers[:-1]:\n", |
|
|
1804 |
" base_layer.trainable = True\n", |
|
|
1805 |
"\n", |
|
|
1806 |
" model.load_weights('model.h5')\n", |
|
|
1807 |
"\n", |
|
|
1808 |
" model.compile(optimizer = Adam(learning_rate = 0.0004), \n", |
|
|
1809 |
" loss = 'binary_crossentropy',\n", |
|
|
1810 |
" metrics = ['acc'])\n", |
|
|
1811 |
" model.fit_generator(generator = data_generator_train,\n", |
|
|
1812 |
" validation_data = data_generator_val,\n", |
|
|
1813 |
" steps_per_epoch=len(data_generator_train)/6,\n", |
|
|
1814 |
" epochs = 10,\n", |
|
|
1815 |
" callbacks = callbacks_list,\n", |
|
|
1816 |
" verbose = 1)" |
|
|
1817 |
] |
|
|
1818 |
}, |
|
|
1819 |
{ |
|
|
1820 |
"cell_type": "code", |
|
|
1821 |
"execution_count": 34, |
|
|
1822 |
"metadata": {}, |
|
|
1823 |
"outputs": [ |
|
|
1824 |
{ |
|
|
1825 |
"name": "stdout", |
|
|
1826 |
"output_type": "stream", |
|
|
1827 |
"text": [ |
|
|
1828 |
"Collecting gdown\n", |
|
|
1829 |
" Downloading https://files.pythonhosted.org/packages/b0/b4/a8e9d0b02bca6aa53087001abf064cc9992bda11bd6840875b8098d93573/gdown-3.8.3.tar.gz\n", |
|
|
1830 |
"Requirement already satisfied: filelock in /opt/conda/lib/python3.6/site-packages (from gdown) (3.0.12)\n", |
|
|
1831 |
"Requirement already satisfied: requests in /opt/conda/lib/python3.6/site-packages (from gdown) (2.22.0)\n", |
|
|
1832 |
"Requirement already satisfied: six in /opt/conda/lib/python3.6/site-packages (from gdown) (1.12.0)\n", |
|
|
1833 |
"Requirement already satisfied: tqdm in /opt/conda/lib/python3.6/site-packages (from gdown) (4.36.1)\n", |
|
|
1834 |
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2019.9.11)\n", |
|
|
1835 |
"Requirement already satisfied: idna<2.9,>=2.5 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (2.8)\n", |
|
|
1836 |
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (1.24.2)\n", |
|
|
1837 |
"Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /opt/conda/lib/python3.6/site-packages (from requests->gdown) (3.0.4)\n", |
|
|
1838 |
"Building wheels for collected packages: gdown\n", |
|
|
1839 |
" Building wheel for gdown (setup.py) ... \u001b[?25ldone\n", |
|
|
1840 |
"\u001b[?25h Created wheel for gdown: filename=gdown-3.8.3-cp36-none-any.whl size=8850 sha256=14a9f4491a378ff8119e1ca63a536cd63c0f8e914ac97133e046e690719cf217\n", |
|
|
1841 |
" Stored in directory: /tmp/.cache/pip/wheels/a7/9d/16/9e0bda9a327ff2cddaee8de48a27553fb1efce73133593d066\n", |
|
|
1842 |
"Successfully built gdown\n", |
|
|
1843 |
"Installing collected packages: gdown\n", |
|
|
1844 |
"Successfully installed gdown-3.8.3\n" |
|
|
1845 |
] |
|
|
1846 |
} |
|
|
1847 |
], |
|
|
1848 |
"source": [ |
|
|
1849 |
"!pip install gdown" |
|
|
1850 |
] |
|
|
1851 |
}, |
|
|
1852 |
{ |
|
|
1853 |
"cell_type": "code", |
|
|
1854 |
"execution_count": 35, |
|
|
1855 |
"metadata": {}, |
|
|
1856 |
"outputs": [ |
|
|
1857 |
{ |
|
|
1858 |
"name": "stdout", |
|
|
1859 |
"output_type": "stream", |
|
|
1860 |
"text": [ |
|
|
1861 |
"Downloading...\n", |
|
|
1862 |
"From: https://drive.google.com/uc?id=1OMWQjtnVkMKLQ3jG4RpUQR2IyimO-W46\n", |
|
|
1863 |
"To: /kaggle/working/model (2).h5\n", |
|
|
1864 |
"49.2MB [00:00, 135MB/s] \n" |
|
|
1865 |
] |
|
|
1866 |
} |
|
|
1867 |
], |
|
|
1868 |
"source": [ |
|
|
1869 |
"!gdown \"https://drive.google.com/uc?id=1OMWQjtnVkMKLQ3jG4RpUQR2IyimO-W46\"" |
|
|
1870 |
] |
|
|
1871 |
}, |
|
|
1872 |
{ |
|
|
1873 |
"cell_type": "code", |
|
|
1874 |
"execution_count": 36, |
|
|
1875 |
"metadata": {}, |
|
|
1876 |
"outputs": [], |
|
|
1877 |
"source": [ |
|
|
1878 |
"!cp \"model (2).h5\" model.h5" |
|
|
1879 |
] |
|
|
1880 |
}, |
|
|
1881 |
{ |
|
|
1882 |
"cell_type": "code", |
|
|
1883 |
"execution_count": 37, |
|
|
1884 |
"metadata": {}, |
|
|
1885 |
"outputs": [ |
|
|
1886 |
{ |
|
|
1887 |
"name": "stdout", |
|
|
1888 |
"output_type": "stream", |
|
|
1889 |
"text": [ |
|
|
1890 |
"1228/1228 [==============================] - 1048s 854ms/step\n" |
|
|
1891 |
] |
|
|
1892 |
}, |
|
|
1893 |
{ |
|
|
1894 |
"data": { |
|
|
1895 |
"text/plain": [ |
|
|
1896 |
"(78592, 6)" |
|
|
1897 |
] |
|
|
1898 |
}, |
|
|
1899 |
"execution_count": 37, |
|
|
1900 |
"metadata": {}, |
|
|
1901 |
"output_type": "execute_result" |
|
|
1902 |
} |
|
|
1903 |
], |
|
|
1904 |
"source": [ |
|
|
1905 |
"model.load_weights('model.h5')\n", |
|
|
1906 |
"\n", |
|
|
1907 |
"preds = model.predict_generator(TestDataGenerator(test_df.index, None, VALID_BATCH_SIZE, \\\n", |
|
|
1908 |
" (WIDTH, HEIGHT), path_test_img), \n", |
|
|
1909 |
" verbose=1)\n", |
|
|
1910 |
"preds.shape" |
|
|
1911 |
] |
|
|
1912 |
}, |
|
|
1913 |
{ |
|
|
1914 |
"cell_type": "code", |
|
|
1915 |
"execution_count": 38, |
|
|
1916 |
"metadata": {}, |
|
|
1917 |
"outputs": [], |
|
|
1918 |
"source": [ |
|
|
1919 |
"from tqdm import tqdm" |
|
|
1920 |
] |
|
|
1921 |
}, |
|
|
1922 |
{ |
|
|
1923 |
"cell_type": "code", |
|
|
1924 |
"execution_count": 39, |
|
|
1925 |
"metadata": {}, |
|
|
1926 |
"outputs": [], |
|
|
1927 |
"source": [ |
|
|
1928 |
"cols = list(train_final_df.columns)" |
|
|
1929 |
] |
|
|
1930 |
}, |
|
|
1931 |
{ |
|
|
1932 |
"cell_type": "code", |
|
|
1933 |
"execution_count": 40, |
|
|
1934 |
"metadata": {}, |
|
|
1935 |
"outputs": [ |
|
|
1936 |
{ |
|
|
1937 |
"name": "stderr", |
|
|
1938 |
"output_type": "stream", |
|
|
1939 |
"text": [ |
|
|
1940 |
"100%|█████████▉| 78545/78592 [00:01<00:00, 48430.17it/s]\n" |
|
|
1941 |
] |
|
|
1942 |
} |
|
|
1943 |
], |
|
|
1944 |
"source": [ |
|
|
1945 |
"# We have preditions for each of the image\n", |
|
|
1946 |
"# We need to make 6 rows for each of file according to the subtype\n", |
|
|
1947 |
"ids = []\n", |
|
|
1948 |
"values = []\n", |
|
|
1949 |
"for i, j in tqdm(zip(preds, test_df.index.to_list()), total=preds.shape[0]):\n", |
|
|
1950 |
"# print(i, j)\n", |
|
|
1951 |
" # i=[any_prob, epidural_prob, intraparenchymal_prob, intraventricular_prob, subarachnoid_prob, subdural_prob]\n", |
|
|
1952 |
" # j = filename ==> ID_xyz.dcm\n", |
|
|
1953 |
" for k in range(i.shape[0]):\n", |
|
|
1954 |
" ids.append([j.replace('.dcm', '_' + cols[k])])\n", |
|
|
1955 |
" values.append(i[k]) " |
|
|
1956 |
] |
|
|
1957 |
}, |
|
|
1958 |
{ |
|
|
1959 |
"cell_type": "code", |
|
|
1960 |
"execution_count": 41, |
|
|
1961 |
"metadata": {}, |
|
|
1962 |
"outputs": [ |
|
|
1963 |
{ |
|
|
1964 |
"data": { |
|
|
1965 |
"text/html": [ |
|
|
1966 |
"<div>\n", |
|
|
1967 |
"<style scoped>\n", |
|
|
1968 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
1969 |
" vertical-align: middle;\n", |
|
|
1970 |
" }\n", |
|
|
1971 |
"\n", |
|
|
1972 |
" .dataframe tbody tr th {\n", |
|
|
1973 |
" vertical-align: top;\n", |
|
|
1974 |
" }\n", |
|
|
1975 |
"\n", |
|
|
1976 |
" .dataframe thead th {\n", |
|
|
1977 |
" text-align: right;\n", |
|
|
1978 |
" }\n", |
|
|
1979 |
"</style>\n", |
|
|
1980 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1981 |
" <thead>\n", |
|
|
1982 |
" <tr style=\"text-align: right;\">\n", |
|
|
1983 |
" <th></th>\n", |
|
|
1984 |
" <th>0</th>\n", |
|
|
1985 |
" </tr>\n", |
|
|
1986 |
" </thead>\n", |
|
|
1987 |
" <tbody>\n", |
|
|
1988 |
" <tr>\n", |
|
|
1989 |
" <th>0</th>\n", |
|
|
1990 |
" <td>ID_000012eaf_any</td>\n", |
|
|
1991 |
" </tr>\n", |
|
|
1992 |
" <tr>\n", |
|
|
1993 |
" <th>1</th>\n", |
|
|
1994 |
" <td>ID_000012eaf_epidural</td>\n", |
|
|
1995 |
" </tr>\n", |
|
|
1996 |
" <tr>\n", |
|
|
1997 |
" <th>2</th>\n", |
|
|
1998 |
" <td>ID_000012eaf_intraparenchymal</td>\n", |
|
|
1999 |
" </tr>\n", |
|
|
2000 |
" <tr>\n", |
|
|
2001 |
" <th>3</th>\n", |
|
|
2002 |
" <td>ID_000012eaf_intraventricular</td>\n", |
|
|
2003 |
" </tr>\n", |
|
|
2004 |
" <tr>\n", |
|
|
2005 |
" <th>4</th>\n", |
|
|
2006 |
" <td>ID_000012eaf_subarachnoid</td>\n", |
|
|
2007 |
" </tr>\n", |
|
|
2008 |
" </tbody>\n", |
|
|
2009 |
"</table>\n", |
|
|
2010 |
"</div>" |
|
|
2011 |
], |
|
|
2012 |
"text/plain": [ |
|
|
2013 |
" 0\n", |
|
|
2014 |
"0 ID_000012eaf_any\n", |
|
|
2015 |
"1 ID_000012eaf_epidural\n", |
|
|
2016 |
"2 ID_000012eaf_intraparenchymal\n", |
|
|
2017 |
"3 ID_000012eaf_intraventricular\n", |
|
|
2018 |
"4 ID_000012eaf_subarachnoid" |
|
|
2019 |
] |
|
|
2020 |
}, |
|
|
2021 |
"execution_count": 41, |
|
|
2022 |
"metadata": {}, |
|
|
2023 |
"output_type": "execute_result" |
|
|
2024 |
} |
|
|
2025 |
], |
|
|
2026 |
"source": [ |
|
|
2027 |
"df = pd.DataFrame(data=ids)\n", |
|
|
2028 |
"df.head()" |
|
|
2029 |
] |
|
|
2030 |
}, |
|
|
2031 |
{ |
|
|
2032 |
"cell_type": "code", |
|
|
2033 |
"execution_count": 42, |
|
|
2034 |
"metadata": {}, |
|
|
2035 |
"outputs": [ |
|
|
2036 |
{ |
|
|
2037 |
"data": { |
|
|
2038 |
"text/html": [ |
|
|
2039 |
"<div>\n", |
|
|
2040 |
"<style scoped>\n", |
|
|
2041 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
2042 |
" vertical-align: middle;\n", |
|
|
2043 |
" }\n", |
|
|
2044 |
"\n", |
|
|
2045 |
" .dataframe tbody tr th {\n", |
|
|
2046 |
" vertical-align: top;\n", |
|
|
2047 |
" }\n", |
|
|
2048 |
"\n", |
|
|
2049 |
" .dataframe thead th {\n", |
|
|
2050 |
" text-align: right;\n", |
|
|
2051 |
" }\n", |
|
|
2052 |
"</style>\n", |
|
|
2053 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
2054 |
" <thead>\n", |
|
|
2055 |
" <tr style=\"text-align: right;\">\n", |
|
|
2056 |
" <th></th>\n", |
|
|
2057 |
" <th>ID</th>\n", |
|
|
2058 |
" <th>Label</th>\n", |
|
|
2059 |
" </tr>\n", |
|
|
2060 |
" </thead>\n", |
|
|
2061 |
" <tbody>\n", |
|
|
2062 |
" <tr>\n", |
|
|
2063 |
" <th>0</th>\n", |
|
|
2064 |
" <td>ID_28fbab7eb_epidural</td>\n", |
|
|
2065 |
" <td>0.5</td>\n", |
|
|
2066 |
" </tr>\n", |
|
|
2067 |
" <tr>\n", |
|
|
2068 |
" <th>1</th>\n", |
|
|
2069 |
" <td>ID_28fbab7eb_intraparenchymal</td>\n", |
|
|
2070 |
" <td>0.5</td>\n", |
|
|
2071 |
" </tr>\n", |
|
|
2072 |
" <tr>\n", |
|
|
2073 |
" <th>2</th>\n", |
|
|
2074 |
" <td>ID_28fbab7eb_intraventricular</td>\n", |
|
|
2075 |
" <td>0.5</td>\n", |
|
|
2076 |
" </tr>\n", |
|
|
2077 |
" <tr>\n", |
|
|
2078 |
" <th>3</th>\n", |
|
|
2079 |
" <td>ID_28fbab7eb_subarachnoid</td>\n", |
|
|
2080 |
" <td>0.5</td>\n", |
|
|
2081 |
" </tr>\n", |
|
|
2082 |
" <tr>\n", |
|
|
2083 |
" <th>4</th>\n", |
|
|
2084 |
" <td>ID_28fbab7eb_subdural</td>\n", |
|
|
2085 |
" <td>0.5</td>\n", |
|
|
2086 |
" </tr>\n", |
|
|
2087 |
" </tbody>\n", |
|
|
2088 |
"</table>\n", |
|
|
2089 |
"</div>" |
|
|
2090 |
], |
|
|
2091 |
"text/plain": [ |
|
|
2092 |
" ID Label\n", |
|
|
2093 |
"0 ID_28fbab7eb_epidural 0.5\n", |
|
|
2094 |
"1 ID_28fbab7eb_intraparenchymal 0.5\n", |
|
|
2095 |
"2 ID_28fbab7eb_intraventricular 0.5\n", |
|
|
2096 |
"3 ID_28fbab7eb_subarachnoid 0.5\n", |
|
|
2097 |
"4 ID_28fbab7eb_subdural 0.5" |
|
|
2098 |
] |
|
|
2099 |
}, |
|
|
2100 |
"execution_count": 42, |
|
|
2101 |
"metadata": {}, |
|
|
2102 |
"output_type": "execute_result" |
|
|
2103 |
} |
|
|
2104 |
], |
|
|
2105 |
"source": [ |
|
|
2106 |
"sample_df = pd.read_csv(input_folder + 'stage_1_sample_submission.csv')\n", |
|
|
2107 |
"sample_df.head()" |
|
|
2108 |
] |
|
|
2109 |
}, |
|
|
2110 |
{ |
|
|
2111 |
"cell_type": "code", |
|
|
2112 |
"execution_count": 43, |
|
|
2113 |
"metadata": {}, |
|
|
2114 |
"outputs": [ |
|
|
2115 |
{ |
|
|
2116 |
"data": { |
|
|
2117 |
"text/html": [ |
|
|
2118 |
"<div>\n", |
|
|
2119 |
"<style scoped>\n", |
|
|
2120 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
2121 |
" vertical-align: middle;\n", |
|
|
2122 |
" }\n", |
|
|
2123 |
"\n", |
|
|
2124 |
" .dataframe tbody tr th {\n", |
|
|
2125 |
" vertical-align: top;\n", |
|
|
2126 |
" }\n", |
|
|
2127 |
"\n", |
|
|
2128 |
" .dataframe thead th {\n", |
|
|
2129 |
" text-align: right;\n", |
|
|
2130 |
" }\n", |
|
|
2131 |
"</style>\n", |
|
|
2132 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
2133 |
" <thead>\n", |
|
|
2134 |
" <tr style=\"text-align: right;\">\n", |
|
|
2135 |
" <th></th>\n", |
|
|
2136 |
" <th>ID</th>\n", |
|
|
2137 |
" <th>Label</th>\n", |
|
|
2138 |
" </tr>\n", |
|
|
2139 |
" </thead>\n", |
|
|
2140 |
" <tbody>\n", |
|
|
2141 |
" <tr>\n", |
|
|
2142 |
" <th>0</th>\n", |
|
|
2143 |
" <td>ID_000012eaf_any</td>\n", |
|
|
2144 |
" <td>0.029101</td>\n", |
|
|
2145 |
" </tr>\n", |
|
|
2146 |
" <tr>\n", |
|
|
2147 |
" <th>1</th>\n", |
|
|
2148 |
" <td>ID_000012eaf_epidural</td>\n", |
|
|
2149 |
" <td>0.001475</td>\n", |
|
|
2150 |
" </tr>\n", |
|
|
2151 |
" <tr>\n", |
|
|
2152 |
" <th>2</th>\n", |
|
|
2153 |
" <td>ID_000012eaf_intraparenchymal</td>\n", |
|
|
2154 |
" <td>0.001740</td>\n", |
|
|
2155 |
" </tr>\n", |
|
|
2156 |
" <tr>\n", |
|
|
2157 |
" <th>3</th>\n", |
|
|
2158 |
" <td>ID_000012eaf_intraventricular</td>\n", |
|
|
2159 |
" <td>0.001194</td>\n", |
|
|
2160 |
" </tr>\n", |
|
|
2161 |
" <tr>\n", |
|
|
2162 |
" <th>4</th>\n", |
|
|
2163 |
" <td>ID_000012eaf_subarachnoid</td>\n", |
|
|
2164 |
" <td>0.001531</td>\n", |
|
|
2165 |
" </tr>\n", |
|
|
2166 |
" </tbody>\n", |
|
|
2167 |
"</table>\n", |
|
|
2168 |
"</div>" |
|
|
2169 |
], |
|
|
2170 |
"text/plain": [ |
|
|
2171 |
" ID Label\n", |
|
|
2172 |
"0 ID_000012eaf_any 0.029101\n", |
|
|
2173 |
"1 ID_000012eaf_epidural 0.001475\n", |
|
|
2174 |
"2 ID_000012eaf_intraparenchymal 0.001740\n", |
|
|
2175 |
"3 ID_000012eaf_intraventricular 0.001194\n", |
|
|
2176 |
"4 ID_000012eaf_subarachnoid 0.001531" |
|
|
2177 |
] |
|
|
2178 |
}, |
|
|
2179 |
"execution_count": 43, |
|
|
2180 |
"metadata": {}, |
|
|
2181 |
"output_type": "execute_result" |
|
|
2182 |
} |
|
|
2183 |
], |
|
|
2184 |
"source": [ |
|
|
2185 |
"df['Label'] = values\n", |
|
|
2186 |
"df.columns = sample_df.columns\n", |
|
|
2187 |
"df.head()" |
|
|
2188 |
] |
|
|
2189 |
}, |
|
|
2190 |
{ |
|
|
2191 |
"cell_type": "code", |
|
|
2192 |
"execution_count": 44, |
|
|
2193 |
"metadata": {}, |
|
|
2194 |
"outputs": [], |
|
|
2195 |
"source": [ |
|
|
2196 |
"df.to_csv('submission.csv', index=False)" |
|
|
2197 |
] |
|
|
2198 |
}, |
|
|
2199 |
{ |
|
|
2200 |
"cell_type": "code", |
|
|
2201 |
"execution_count": 45, |
|
|
2202 |
"metadata": {}, |
|
|
2203 |
"outputs": [ |
|
|
2204 |
{ |
|
|
2205 |
"data": { |
|
|
2206 |
"text/html": [ |
|
|
2207 |
"<a href=submission.csv>Download CSV file</a>" |
|
|
2208 |
], |
|
|
2209 |
"text/plain": [ |
|
|
2210 |
"<IPython.core.display.HTML object>" |
|
|
2211 |
] |
|
|
2212 |
}, |
|
|
2213 |
"execution_count": 45, |
|
|
2214 |
"metadata": {}, |
|
|
2215 |
"output_type": "execute_result" |
|
|
2216 |
} |
|
|
2217 |
], |
|
|
2218 |
"source": [ |
|
|
2219 |
"create_download_link(filename='submission.csv')" |
|
|
2220 |
] |
|
|
2221 |
} |
|
|
2222 |
], |
|
|
2223 |
"metadata": { |
|
|
2224 |
"kernelspec": { |
|
|
2225 |
"display_name": "Python 3", |
|
|
2226 |
"language": "python", |
|
|
2227 |
"name": "python3" |
|
|
2228 |
}, |
|
|
2229 |
"language_info": { |
|
|
2230 |
"codemirror_mode": { |
|
|
2231 |
"name": "ipython", |
|
|
2232 |
"version": 3 |
|
|
2233 |
}, |
|
|
2234 |
"file_extension": ".py", |
|
|
2235 |
"mimetype": "text/x-python", |
|
|
2236 |
"name": "python", |
|
|
2237 |
"nbconvert_exporter": "python", |
|
|
2238 |
"pygments_lexer": "ipython3", |
|
|
2239 |
"version": "3.6.5" |
|
|
2240 |
} |
|
|
2241 |
}, |
|
|
2242 |
"nbformat": 4, |
|
|
2243 |
"nbformat_minor": 1 |
|
|
2244 |
} |